Advertisement

An Improved Method to Deploy Cache Servers in Software Defined Network-based Information Centric Networking for Big Data

  • Jan BadshahEmail author
  • Muhammad Kamran
  • Nadir Shah
  • Shahbaz Akhtar Abid
Article
  • 2 Downloads

Abstract

Big data involves a large amount of data generation, storage, transfer from one place to another, and analysis to extract meaningful information. Information centric networking (ICN) is an infrastructure that transfers big data from one node to another node, and provides in-network caches. For software defined network-based ICN approach, a recently proposed centralized cache server architecture deploys single cache server based on path-stretch value. Despite the advantages of centralized cache in ICN, single cache server for a large network has scalability issue. Moreover, it only considers the path-stretch ratio for cache server deployment. Consequently, the traffic can not be reduced optimally. To resolve such issues, we propose to deploy multiple cache servers based on joint optimization of multiple parameters, namely: (i) closeness centrality; (ii) betweenness centrality; (iii) path-stretch values; and (iv) load balancing in the network. Our proposed approach first computes the locations and the number of cache servers based on the network topology information in an offline manner and the cache servers are placed at their corresponding locations in the network. Next, the controller installs flow rules at the switches such that the switches can forward the request for content to one of its nearest cache server. Upon reaching a content request, if the content request matches with the contents stored at the cache server, the content is delivered to the requesting node; otherwise, the request is forwarded to the controller. In the next step, controller computes the path such that the content provider first sends the content to the cache server. Finally, a copy of the content is forwarded to the requesting node. Simulation results confirmed that the proposed approach performs better in terms of traffic overhead and average end-to-end delay as compared to an existing state-of-the-art approach.

Keywords

Big data Centralized cache Software defined networking Information centric networking Path-stretch Closeness Betweenness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Salsano, S., Detti, A., Cancellieri, M., Pomposini, M., Blefari-Melazzi, N.: Transport-layer issues in information centric networks. In: ACM SIGCOMM Workshop on Information-Centric Networking (ICN2012), Helsinki, Finland (2012)Google Scholar
  2. 2.
    Koponen, T., Chawla, M., Chun, B.G., et al.: A data-oriented (and beyond) network architecture. In: ACM SIGCOMM (2007)Google Scholar
  3. 3.
    Jacobson, V., Smetters, D.K., Thornton, J.D., et al.: Networking named content. In: ACM CoNEXT (2009)Google Scholar
  4. 4.
    Garcia-Luna-Aceves, J.J., Barijough, M.M.: Efficient multicasting in content-centric networks using locator-based forwarding state. In: 2017 International Conference on Computing, Networking and Communications (ICNC), pp. 172–177. IEEE (2017)Google Scholar
  5. 5.
    Lv, J, Wang, X, Ren, K, Huang, M, Li, K.: ACO-inspired information-centric networking routing mechanism. Comput. Netw. 126, 200–17 (2017 Oct 24)Google Scholar
  6. 6.
    Antunes, R.S., Lehmann, M.B., Mansilha, R.B., Gaspary, L.P., Barcellos, M.P.: NDNRel: A mechanism based on relations among objects to improve the performance of NDN. J. Netw. Comput. Appl. 87, 73–86 (2017)CrossRefGoogle Scholar
  7. 7.
    Ren, Y., Li, J., Li, L., Shi, S., Zhi, J., Wu, H.: Modeling content transfer performance in information-centric networking. Futur. Gener. Comput. Syst. 74, 12–19 (2017)CrossRefGoogle Scholar
  8. 8.
    Kim, D., Kim, Y.: Enhancing NDN feasibility via dedicated routing and caching. Comput. Netw. 126, 218–228 (2017)CrossRefGoogle Scholar
  9. 9.
    Torres, J.V., Alvarenga, I.D., Boutaba, R., Duarte, O.C.M.: An autonomous and efficient controller-based routing scheme for networking Named-Data mobility. Comput. Commun. 103, 94–103 (2017)CrossRefGoogle Scholar
  10. 10.
    Gao, S., Zeng, Y., Luo, H., Zhang, H.: Scalable control plane for intra-domain communication in software defined information centric networking. Futur. Gener. Comput. Syst. 56, 110–120 (2016)CrossRefGoogle Scholar
  11. 11.
    Aubry, E., Silverston, T., Chrisment, I.: SRSC: SDN-based routing scheme for CCN. In: 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–5. IEEE (2015)Google Scholar
  12. 12.
    Adrichem, van, Niels, LM, Kuipers, Fernando A.: NDNFLow: software-defined named data networking. In: 2015 1st IEEE Conference on Network Softwarization (NetSoft), IEEE (2015)Google Scholar
  13. 13.
    Ueda, K., Yokota, K., Kurihara, J., Tagami, A.: Towards the NFVI-Assisted ICN: Integrating ICN forwarding into the virtualization infrastructure. In: Global Communications Conference (GLOBECOM), 2016 IEEE, pp. 1–6. IEEE (2016)Google Scholar
  14. 14.
    Lv, J., Wang, X., Huang, M., Shi, J., Li, K., Li, J.: RISC: ICN Routing mechanism incorporating SDN and community division. Comput. Netw. 123, 88–103 (2017)CrossRefGoogle Scholar
  15. 15.
    Jmal, R., Fourati, L.C.: An OpenFlow architecture for managing content-centric-network (OFAM-CCN) based on popularity caching strategy. Computer Standards & Interfaces 51, 22–29 (2017)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Syrivelis, D., Parisis, G., Trossen, D., Flegkas, P., Sourlas, V., Korakis, T., Tassiulas, L.: Pursuing a software defined information-centric network. In: 2012 European Workshop on Software Defined Networking (EWSDN), pp. 103–108. IEEE (2012)Google Scholar
  18. 18.
    Trossen, D., Sarela, M., Sollins, K.: Arguments for an information-centric internetworking architecture. ACM SIGCOMM Computer Communication Review 40(2), 26–33 (2010)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    HassasYeganeh, S., Ganjali, Y.: Kandoo: a framework for efficient and scalable offloading of control applications. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, pp. 19–24. ACM (2012)Google Scholar
  21. 21.
  22. 22.
    Seufert, M., Burger, V., Wamser, F., Tran-Gia, P., Moldovan, C., Hoßfeld, T.: Utilizing home router caches to augment CDNs towards information-centric networking. In: European Conference on Networks and Communications (EuCNC), Paris, France (2015)Google Scholar
  23. 23.
    Syrivelis, D., Parisis, G., Trossen, D., Flegkas, P., Sourlas, V., Korakis, T., Tassiulas, L.: Pursuing a software defined information-centric network. In: 2012 European Workshop on Software Defined Networking (EWSDN), pp. 103–108. IEEE (2012)Google Scholar
  24. 24.
    Vahlenkamp, M., Schneider, F., Kutscher, D., Seedorf, J.: Enabling information centric networking in IP networks using SDN. In: 2013 IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1–6. IEEE (2013)Google Scholar
  25. 25.
    Veltri, L., Morabito, G., Salsano, S., Blefari-Melazzi, N., Detti, A.: Supporting information-centric functionality in software defined networks. In: 2012 IEEE International Conference on Communications (ICC), pp. 6645–6650. IEEE (2012)Google Scholar
  26. 26.
    Salsano, S., Blefari-Melazzi, N., Detti, A., Morabito, G., Veltri, L.: Information centric networking over SDN and OpenFlow: Architectural aspects and experiments on the OFELIA testbed. Comput. Netw. 57(16), 3207–3221 (2013)CrossRefGoogle Scholar
  27. 27.
    Arumaithurai, M., Chen, J., Monticelli, E., Fu, X., Ramakrishnan, K.K.: Exploiting ICN for flexible management of software-defined networks. In: Proceedings of the 1st international conference on Information-centric networking, pp. 107–116. ACM (2014)Google Scholar
  28. 28.
    Aubry, E., Silverston, T., Chrisment, I.: Implementation and Evaluation of a Controller-Based Forwarding Scheme for NDN. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 144–151. IEEE (2017)Google Scholar
  29. 29.
    Ueda, K., Yokota, K., Kurihara, J., Tagami, A.: Towards the NFVI-Assisted ICN: Integrating ICN Forwarding into the virtualization infrastructure. In: Global Communications Conference (GLOBECOM), 2016 IEEE, pp. 1–6. IEEE (2016)Google Scholar
  30. 30.
    Balan, T., Zamfir, S., Robu, D., Sandu, F.: Contributions to content-based software defined networks. In: 2016 International Conference on Communications (COMM), pp. 159–162. IEEE (2016)Google Scholar
  31. 31.
    Xiulei, W., Ming, C., Chao, H., Xi, W., Changyou, X.: SDICN: A software defined deployable framework of information centric networking. China Communications 13(3), 53–65 (2016)CrossRefGoogle Scholar
  32. 32.
    Aubry, E., Silverston, T., Chrisment, I.: SRSC: SDN-based routing scheme for CCN. In: 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–5. IEEE (2015)Google Scholar
  33. 33.
    Gao, S., Zeng, Y., Luo, H., Zhang, H.: Scalable area-based hierarchical control plane for software defined information centric networking. In: 2014 23rd International Conference on Computer Communication and Networks (ICCCN), pp. 1–7. IEEE (2014)Google Scholar
  34. 34.
    Xing, C., Ding, K., Hu, C., Chen, M., Xu, B.: SD-ICN: Toward Wide area deployable software defined information centric networking. KSII Trans. Internet Inf. Syst. 10(5), 2267–2285 (2016)Google Scholar
  35. 35.
    Son, J., Kim, D., Kang, H.S., Hong, C.S.: Forwarding strategy on SDN-based content centric network for efficient content delivery. In: 2016 International Conference on Information Networking (ICOIN), pp. 220–225. IEEE (2016)Google Scholar
  36. 36.
    Torresa, J.V., Boutabab, R., Duartea, O.C.M.: Evaluating CRoS-NDN: A comparative performance analysis of the Controller-based Routing Scheme for Named-Data Networking. In: Technical Report. Electrical Engineering Program (COPPE/UFRJ) (2016)Google Scholar
  37. 37.
    Lv, J., Wang, X., Huang, M., Shi, J., Li, K., Li, J.: RISC: ICN Routing mechanism incorporating SDN and community division. Comput. Netw. 123, 88–103 (2017)CrossRefGoogle Scholar
  38. 38.
    Jmal, R., Fourati, L.C.: An OpenFlow architecture for managing content-centric-network (OFAM-CCN) based on popularity caching strategy. Computer Standards and Interfaces 51, 22–29 (2017)CrossRefGoogle Scholar
  39. 39.
    Torres, J.V., Alvarenga, I.D., Boutaba, R., Duarte, O.C.M.: An autonomous and efficient controller-based routing scheme for networking Named-Data mobility. Comput. Commun. 103, 94–103 (2017)CrossRefGoogle Scholar
  40. 40.
    Lai, J., Fu, Q., Moors, T.: Using SDN and NFV to enhance request rerouting in ISP-CDN collaborations. Comput. Netw. 113, 176–187 (2017)CrossRefGoogle Scholar
  41. 41.
    Ahmed, S.H., Bouk, S.H., Kim, D., Rawat, D.B., Song, H.: Named data networking for software defined vehicular networks. IEEE Commun. Mag. 55(8), 60–66 (2017)CrossRefGoogle Scholar
  42. 42.
    Chang, D., Kwak, M., Choi, N., Kwon, T., Choi, Y.: C-flow: An efficient content delivery framework with OpenFlow. In: 2014 International Conference on Information Networking (ICOIN), pp. 270–275. IEEE (2014)Google Scholar
  43. 43.
    Yang, C., Chen, Z., Xia, B., Wang, J.: When ICN meets c-RAN for HetNets: an SDN approach. IEEE Commun. Mag. 53(11), 118–125 (2015)CrossRefGoogle Scholar
  44. 44.
    Arumaithurai, M., Chen, J., Maiti, E., Fu, X., Ramakrishnan, K.K.: Prototype of an ICN based approach for flexible service chaining in SDN. In: 2015 IEEE Conference on Computer Communications Workshops (INFOCOMWKSHPS), pp. 5–6. IEEE (2015)Google Scholar
  45. 45.
    Eum, S., Jibiki, M., Murata, M., Asaeda, H., Nishinaga, N.: An ICN architecture within the framework of SDN (2015)Google Scholar
  46. 46.
    Petropoulos, G., Katsaros, K.V., Xezonaki, M.E.: OpenFlow-compliant topology management for SDN-enabled information centric networks. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 951–954. IEEE (2017)Google Scholar
  47. 47.
    Xie, H., Zou, T.: Futurewei Technologies, Inc., Method of seamless integration and independent evolution of information-centric networking via software defined networking. U.S. Patent Application 13 (/911), 864 (2013)Google Scholar
  48. 48.
    Rowshanrad, S., Parsaei, M.R., Keshtgari, M.: Implementing NDN using SDN: a review on methods and applications. IIUM Engineering Journal 17(2), 11–20 (2016)CrossRefGoogle Scholar
  49. 49.
    Sun, Q., Wendong, W., Hu, Y., Que, X., Xiangyang, G.: SDN-based autonomic CCN traffic management. In: Globecom Workshops (GC Wkshps), 2014, pp. 183–187. IEEE (2014)Google Scholar
  50. 50.
    Youssef, N.E.H.B., Barouni, Y., Khalfallah, S., Slama, J.B.H., Driss, K.B.: Mixing SDN and CCN for content-centric Qos aware smart grid architecture. In: 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), pp. 1–5. IEEE (2017)Google Scholar
  51. 51.
    Jiang, Z., Wu, D., Rojas-Cessa, R.: Lowest-cost network node identification for data caching for information centric networks. In: Sarnoff Symposium, 2016 IEEE 37th, pp. 193–198. IEEE (2016)Google Scholar
  52. 52.
    Kalghoum, A., Gammar, S.M.: Towards new information centric networking strategy based on software defined networking. In: Wireless Communications and Networking Conference (WCNC), 2017 IEEE, pp. 1–6. IEEE (2017)Google Scholar
  53. 53.
    Bacher, F., Rainer, B., Hellwagner, H.: Towards controller-aided multimedia dissemination in named data networking. In: 2015 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6. IEEE (2015)Google Scholar
  54. 54.
    Mercian, A., Ravindran, R., Chakraborti, A.: ICN-based Network and Service Controller on an OpenFlow Network testbed, Technical Report. https://pdfs.semanticscholar.org/c710/faa9f63b6c38afccce988c62eb5be1dc886a.pdf Accessed on March 12, 2018
  55. 55.
    Ru, J., Zhe, C., Hongbin, L., Hongke, Z.: Status-aware resource adaptation in information-centric and software-defined network. China Communications 10(12), 66–76 (2013)CrossRefGoogle Scholar
  56. 56.
    Li, R., Asaeda, H., Li, J., Fu, X.: A distributed authentication and authorization scheme for in-network big data sharing. Digital Communications and Networks 3(4), 226–235 (2017)CrossRefGoogle Scholar
  57. 57.
    Karakannas, A., Zhao, Z.: Information centric networking for delivering big data with persistent identifiers. University of Amsterdam (2014)Google Scholar
  58. 58.
    Li, R., Harai, H., Asaeda, H.: An aggregatable name-based routing for energy-efficient data sharing in big data era. IEEE Access 3, 955–966 (2015)CrossRefGoogle Scholar
  59. 59.
    Jmal, R., Fourati, L.C.: Emerging applications for future internet approach based-on SDN and ICN. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 208–213. IEEE (2017)Google Scholar
  60. 60.
    Amin, R., Reisslein, M., Shah, N.: Hybrid SDN networks: a survey of existing approaches, In: IEEE Communications Surveys and Tutorials.  https://doi.org/10.1109/COMST.2018.2837161 (2018)
  61. 61.
    Zhao, X., Yao, L., Wu, G: ESLD: An efficient and secure link discovery scheme for software-defined networking. Int. J. Commun. Syst. 31(10), e3552 (2018)CrossRefGoogle Scholar
  62. 62.
    Wang, L., Yao, L., Xu, Z., Wu, G., Obaidat, M.S.: CFR: A cooperative link failure recovery scheme in software-defined networks. Int. J. Commun. Syst. 31(10), e3560 (2018)CrossRefGoogle Scholar
  63. 63.
    Li, C., Wu, Y., Yuan, X., Sun, Z., Wang, W., Li, X., Gong, L.: Detection and defense of DDoS attack–based on deep learning in OpenFlow-based SDN. International Journal of Communication Systems (2018)Google Scholar
  64. 64.
    Trois, C., Del Fabro, M.D., de Bona, L.C., Martinello, M.: A survey on SDN programming languages: Toward a taxonomy. IEEE Commun. Surv. Tutorials 18(4), 2687–2712 (2016)CrossRefGoogle Scholar
  65. 65.
    Nguyen, X.N., Saucez, D., Barakat, C., Turletti, T.: Rules placement problem in openflow networks: a survey. IEEE Commun. Surv. Tutorials 18(2), 1273–1286 (2016)CrossRefGoogle Scholar
  66. 66.
    Murata, T.: Petri nets properties, analysis and applications. Proc. IEEE 77, 541–580 (1989).  https://doi.org/10.1109/5.24143 CrossRefGoogle Scholar
  67. 67.
    Moura, L., Bjrner, N.: Satisfiability modulo theories: an appetizer. In: Oliveira, M.V.M., Woodcock, J. (eds.) Formal Methods: Foundations and Applications, vol. 5902, pp 23–36. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-642-10452-7_3

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.COMSATS University IslamabadWah CampusPakistan
  2. 2.COMSATS University IslamabadLahore CampusPakistan

Personalised recommendations