Advertisement

Distributed Video Surveillance Using Smart Cameras

  • Hanna Kavalionak
  • Claudio Gennaro
  • Giuseppe Amato
  • Claudio Vairo
  • Costantino Perciante
  • Carlo Meghini
  • Fabrizio Falchi
Article
  • 28 Downloads

Abstract

Video surveillance systems have become an indispensable tool for the security and organization of public and private areas. Most of the current commercial video surveillance systems rely on a classical client/server architecture to perform face and object recognition. In order to support the more complex and advanced video surveillance systems proposed in the last years, companies are required to invest resources in order to maintain the servers dedicated to the recognition tasks. In this work, we propose a novel distributed protocol for a face recognition system that exploits the computational capabilities of the surveillance devices (i.e. cameras) to perform the recognition of the person. The cameras fall back to a centralized server if their hardware capabilities are not enough to perform the recognition. In order to evaluate the proposed algorithm we simulate and test the 1NN and weighted kNN classification algorithms via extensive experiments on a freely available dataset. As a prototype of surveillance devices we have considered Raspberry PI entities. By means of simulations, we show that our algorithm is able to reduce up to 50% of the load from the server with no negative impact on the quality of the surveillance service.

Keywords

Distributed architectures Internet of things Video surveillance Self-organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work has been partially funded by the DIITET Department of CNR, in the framework of the ”Revenue Energy and ICT for Sustainability Energy” project.

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Computer Vision-eccv 2004, pp. 469–481. Springer (2004)Google Scholar
  2. 2.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  3. 3.
    An, L., Kafai, M., Bhanu, B.: Face recognition in multi-camera surveillance videos using dynamic Bayesian network. In: Sixth International Conference on Distributed Smart Cameras, ICDSC (2012)Google Scholar
  4. 4.
    Carlini, E., Lulli, A., Ricci, L.: dragon: Multidimensional range queries on distributed aggregation trees. Futur. Gener. Comput. Syst. 55, 101–115 (2016)CrossRefGoogle Scholar
  5. 5.
    Carlini, E., Ricci, L., Coppola, M.: Flexible load distribution for hybrid distributed virtual environments. Futur. Gener. Comput. Syst. 29(6), 1561–1572 (2013)CrossRefGoogle Scholar
  6. 6.
    Cui, L., Yang, S., Chen, F., Ming, Z., Lu, N., Qin, J.: A survey on application of machine learning for internet of things. Int. J. Mach. Learn. Cybern. 9(8), 1399–1417 (2018)CrossRefGoogle Scholar
  7. 7.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley (2012)Google Scholar
  8. 8.
    Erdem, U.M., Sclaroff, S.: Event prediction in a hybrid camera network. ACM Trans. Sensor Netw. (TOSN) 8(2), 16 (2012)Google Scholar
  9. 9.
    Esterle, L., Lewis, P.R., Yao, X., Rinner, B.: Socio-economic vision graph generation and handover in distributed smart camera networks. ACM Trans. Sensor Netw. (TOSN) 10(2), 20 (2014)Google Scholar
  10. 10.
    Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images (invited paper). In: AVBPA, Volume 1206 of Lecture Notes in Computer Science, pp. 127–142. Springer (1997)Google Scholar
  11. 11.
    Gaynor, P., Coore, D.: Distributed face recognition using collaborative judgement aggregation in a swarm of tiny wireless sensor nodes. In: SoutheastCon 2015, pp. 1–6 (2015)Google Scholar
  12. 12.
    Gheissari, N., Sebastian, T.B., Hartley, R.: Person reidentification using spatiotemporal appearance. In: Proc. of the 2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, CVPR ’06, pp. 1528–1535. IEEE Computer Society, Washington, DC (2006)Google Scholar
  13. 13.
    Hong, X., Gerla, M., Pei, G., Chiang, C.-C.: A group mobility model for ad hoc wireless networks. In: Proceedings of the 2nd ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 53–60. ACM (1999)Google Scholar
  14. 14.
    Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Mobilenets, H. Adam.: Efficient convolutional neural networks for mobile vision applications. ArXiv:1704.0486 (2017)
  15. 15.
    Kavalionak, H., Carlini, E., Ricci, L., Montresor, A., Coppola, M.: Integrating peer-to-peer and cloud computing for massively multiuser online games. Peer-to-Peer Netw Appl (PPNA), 1–19 (2013)Google Scholar
  16. 16.
    Kavalionak, H., Gennaro, C., Amato, G., Meghini, C.: Dice: A distributed protocol for camera-aided video surveillance. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), pp. 477–484. IEEE (2015)Google Scholar
  17. 17.
    Kenk, V.S., Kovačič, S., Kristan, M., Hajdinjak, M., Perš, J., et al.: Visual re-identification across large, distributed camera networks. Image Vis. Comput. 34, 11–26 (2015)CrossRefGoogle Scholar
  18. 18.
    Kulathumani, V., Parupati, S., Ross, A., Jillela, R.: Collaborative face recognition using a network of embedded cameras. In: Distributed Video Sensor Networks, pp. 373–387. Springer (2011)Google Scholar
  19. 19.
    Kushwaha, M., Koutsoukos, X.: Collaborative 3d target tracking in distributed smart camera networks for wide-area surveillance. J. Sensor Actuat. Netw., 2(2) (2013)CrossRefGoogle Scholar
  20. 20.
    Lee, K.-C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach Intell. 27(5), 684–698 (2005)CrossRefGoogle Scholar
  21. 21.
    Lewis, P.R., Esterle, L., Chandra, A., Rinner, B., Yao, X.: Learning to be different: Heterogeneity and efficiency in distributed smart camera networks. In: IEEE 7th Int. Conf. on Self-Adaptive and Self-Organizing Systems (SASO), pp. 209–218. IEEE (2013)Google Scholar
  22. 22.
    LiKamWa, R., Hou, Y., Gao, J., Polansky, M., Zhong, L.: Redeye: Analog convnet image sensor architecture for continuous mobile vision. In: Proceedings of the 43rd International Symposium on Computer Architecture, ISCA ’16, pp. 1255–266. IEEE Press, Piscataway (2016)Google Scholar
  23. 23.
    Mishra, R., Kumar, P., Chaudhury, S., Indu, S.: Monitoring a large surveillance space through distributed face matching. In: 2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pp. 1–5. IEEE (2013)Google Scholar
  24. 24.
    Montresor, A., Jelasity, M.: PeerSim: A scalable p2p simulator. In: Proc. of P2P’09, pp. 99–100. IEEE (2009)Google Scholar
  25. 25.
    Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conf. (2015)Google Scholar
  26. 26.
    Quaritsch, M., Rinner, B., Strobl, B.: Improved agent-oriented middleware for distributed smart cameras. In: ICDSC’07. First ACM/IEEE Int. Conf. on Distributed Smart Cameras, 2007, pp. 297–304. IEEE (2007)Google Scholar
  27. 27.
    Rambach, J., Huber, M.F., Balthasar, M.R., Zoubir, A.M.: Collaborative multi-camera face recognition and tracking. In: 2015 12th IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2015)Google Scholar
  28. 28.
    Saini, M.K., Atrey, P.K., Saddik, A.E.: From smart camera to smarthub: Embracing cloud for video surveillance. Int. Journal of Distrib. Sensor Networks (2014)Google Scholar
  29. 29.
    SanMiguel, J.C., Micheloni, C., Shoop, K., Foresti, G.L., Cavallaro, A.: Self-reconfigurable smart camera networks. Computer 47(5), 67–73 (2014)CrossRefGoogle Scholar
  30. 30.
    Song, M., Tao, D., Maybank, S.J.: Sparse camera network for visual surveillance–a comprehensive survey. ArXiv:1302.0446 (2013)
  31. 31.
    Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-level performance in face verification. In: Proc. of the 2014 IEEE Conf. on Computer Vision and Pattern Recognition, CVPR ’14, pp. 11701–1708. IEEE Computer Society, Washington, DC (2014)Google Scholar
  32. 32.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  33. 33.
    Upton, E., Halfacree, G.: Raspberry Pi User Guide. Wiley (2012)Google Scholar
  34. 34.
    Velipasalar, S., Schlessman, J., Chen, C.-Y., Wolf, W.H., Singh, J.P.: A scalable clustered camera system for multiple object tracking. EURASIP J. Image Video Process. 2008, 22 (2008)CrossRefGoogle Scholar
  35. 35.
    Wang, X.: Intelligent multi-camera video surveillance: A review. Pattern Recogn. Lett. 34(1), 3–19 (2013)CrossRefGoogle Scholar
  36. 36.
    Wiest, J., Hoffken, M., Kresel, U., Dietmayer, K.: Probabilistic trajectory prediction with gaussian mixture models. In: 2012 IEEE Intelligent Vehicles Symposium (IV), pp. 141–146 (2012)Google Scholar
  37. 37.
    Wiskott, L., Fellous, J.-M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. In: ICIP (1), pp. 129–132 (1997)Google Scholar
  38. 38.
    Yoder, J., Medeiros, H., Park, J., Kak, A.C.: Cluster-based distributed face tracking in camera networks. IEEE Trans Image Process 19(10), 2551–2563 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yonga, F., Junior, A.G., Mefenza, M., Saldanha, L., Bobda, C., Velipassalar, S.: Self-coordinated target assignment and camera handoff in distributed network of embedded smart cameras. In: Proc. of the Int. Conf. on Distributed Smart Cameras, p. 16. ACM (2014)Google Scholar
  40. 40.
    Yun, S.S., Nguyen, Q., Choi, J.: Distributed sensor networks for multiple human recognition in indoor environments. In: 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 753–756 (2016)Google Scholar
  41. 41.
    Zafeiriou, S., Zhang, C., Zhang, Z.: A survey on face detection in the wild: Past, present and future. Comput. Vis. Image Underst. 138, 1–24 (2015)CrossRefGoogle Scholar
  42. 42.
    Zarezadeh, A., Bobda, C., Yonga, F., Mefenza, M.: Efficient network clustering for traffic reduction in embedded smart camera networks. J. Real-Time Image Proc., 1–14 (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.University of FlorenceFirenzeItaly
  2. 2.Information Science and Technologies InstituteNational Research Council (ISTI-CNR)PisaItaly

Personalised recommendations