Advertisement

Journal of Grid Computing

, Volume 17, Issue 1, pp 191–204 | Cite as

Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures

  • Carlos de AlfonsoEmail author
  • Miguel Caballer
  • Amanda Calatrava
  • Germán Moltó
  • Ignacio Blanquer
Article

Abstract

Computer clusters are widely used platforms to execute different computational workloads. Indeed, the advent of virtualization and Cloud computing has paved the way to deploy virtual elastic clusters on top of Cloud infrastructures, which are typically backed by physical computing clusters. In turn, the advances in Green computing have fostered the ability to dynamically power on the nodes of physical clusters as required. Therefore, this paper introduces an open-source framework to deploy elastic virtual clusters running on elastic physical clusters where the computing capabilities of the virtual clusters are dynamically changed to satisfy both the user application’s computing requirements and to minimise the amount of energy consumed by the underlying physical cluster that supports an on-premises Cloud. For that, we integrate: i) an elasticity manager both at the infrastructure level (power management) and at the virtual infrastructure level (horizontal elasticity); ii) an automatic Virtual Machine (VM) consolidation agent that reduces the amount of powered on physical nodes using live migration and iii) a vertical elasticity manager to dynamically and transparently change the memory allocated to VMs, thus fostering enhanced consolidation. A case study based on real datasets executed on a production infrastructure is used to validate the proposed solution. The results show that a multi-elastic virtualized datacenter provides users with the ability to deploy customized scalable computing clusters while reducing its energy footprint.

Keywords

Cloud computing Green computing Elasticity Virtualization Infrastructure management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding Information

The authors would like to thank the Spanish “Ministerio de Economía, Industria y Competitividad” for the project “BigCLOE” under grant reference TIN2016-79951-R.

The results of this work have been partially supported by ATMOSPHERE (Adaptive, Trustworthy, Manageable, Orchestra- ted, Secure, Privacy-assuring Hybrid, Ecosystem for Resilient Cloud Computing), funded by the European Commission under the Cooperation Programme, Horizon 2020 grant agreement No 777154.

References

  1. 1.
    Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice Hall PTR, Upper Saddle River (1999)Google Scholar
  2. 2.
    de Alfonso, C., Caballer, M., Alvarruiz, F., Moltó, G.: An economic and energy-aware analysis of the viability of outsourcing cluster computing to the cloud. Futur. Gener. Comput. Syst. (Int. J. Grid Comput eScience) 29, 704–712 (2013).  https://doi.org/10.1016/j.future.2012.08.014 CrossRefGoogle Scholar
  3. 3.
    Williams, D., Jamjoom, H., Liu, Y.H., Weatherspoon, H.: Overdriver: handling memory overload in an oversubscribed cloud. ACM SIGPLAN Not. 46(7), 205 (2011).  https://doi.org/10.1145/2007477.1952709. http://dl.acm.org/citation.cfm?id=2007477.1952709 CrossRefGoogle Scholar
  4. 4.
    Valentini, G., Lassonde, W., Khan, S., Min-Allah, N., Madani, S., Li, J., Zhang, L., Wang, L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A., Xu, C.Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J., Kliazovich, D., Bouvry, P.: An overview of energy efficiency techniques in cluster computing systems. Clust. Comput. 16(1), 3–15 (2013).  https://doi.org/10.1007/s10586-011-0171-x CrossRefGoogle Scholar
  5. 5.
    De Alfonso, C., Caballer, M., Hernández, V.: Efficient power management in high performance computer clusters. In: Proceedings of the 1st International Multi-conference on Innovative Developments in ICT, Proceedings of the International Conference on Green Computing 2010 (ICGreen 2010), 39–44 (2010)Google Scholar
  6. 6.
    OpenNebula: OpenNebula Cloud Software https://opennebula.org/. [Online; accessed 12-June-2017]
  7. 7.
    OpenStack: OpenStack Cloud Software. http://openstack.org. [Online; accessed 12 June 2017]
  8. 8.
    VMWare: VMWare vCenter Server. https://www.vmware.com/products/vcenter-server.html. [Online; accessed 12 June 2017]
  9. 9.
    De Alfonso, C., Blanquer, I.: Automatic consolidation of virtual machines in on-premises cloud platforms. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp 1070–1079 (2017).  https://doi.org/10.1109/CCGRID.2017.128
  10. 10.
    Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a grid site manager. In: Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, HPDC ’03, p 90. IEEE Computer Society, Washington, DC (2003). http://dl.acm.org/citation.cfm?id=822087.823392
  11. 11.
    Doelitzscher, F., Held, M., Reich, C., Sulistio, A.: Viteraas: Virtual cluster as a service. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), pp 652–657 (2011).  https://doi.org/10.1109/CloudCom.2011.101
  12. 12.
    Wei, X., Wang, H., Li, H., Zou, L.: Dynamic deployment and management of elastic virtual clusters. In: 2011 Sixth Annual Chinagrid Conference (ChinaGrid), pp 35–41 (2011).  https://doi.org/10.1109/ChinaGrid.2011.31
  13. 13.
    de Assuncao, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In: Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, HPDC ’09, pp 141–150. ACM, New York (2009).  https://doi.org/10.1145/1551609.1551635. http://doi.acm.org/10.1145/1551609.1551635
  14. 14.
    Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically extend site resources. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp 43–52 (2010).  https://doi.org/10.1109/CCGRID.2010.80
  15. 15.
    Niu, S., Zhai, J., Ma, X., Tang, X., Chen, W.: Cost-effective cloud hpc resource provisioning by building semi-elastic virtual clusters. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, pp 56:1–56:12. ACM, New York (2013).  https://doi.org/10.1145/2503210.2503236. http://doi.acm.org/10.1145/2503210.2503236
  16. 16.
    Bialecki, A., Cafarella, M., Cutting, D., Omalley, O.: Hadoop: a framework for running applications on large clusters built of commodity hardware. Tech. rep. Apache Hadoop. http://hadoop.apache.org (2005)
  17. 17.
  18. 18.
    Appliance, C.C.S.: Creating elastic virtual clusters. http://cernvm.cern.ch/portal/elasticclusters (2015)
  19. 19.
    Research project, T.G.: The games research project. http://www.green-datacenters.eu (2013)
  20. 20.
    Cioara, T., Anghel, I., Salomie, I., Copil, G., Moldovan, D., Kipp, A.: Energy aware dynamic resource consolidation algorithm for virtualized service centers based on reinforcement learning. In: 2011 10th International Symposium on Parallel and Distributed Computing (ISPDC), pp 163–169 (2011).  https://doi.org/10.1109/ISPDC.2011.32
  21. 21.
    Farahnakian, F., Liljeberg, P., Plosila, J.: Energy-efficient virtual machines consolidation in cloud data centers using reinforcement learning. In: 2014 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 500–507 (2014).  https://doi.org/10.1109/PDP.2014.109
  22. 22.
    Masoumzadeh, S., Hlavacs, H.: Integrating vm selection criteria in distributed dynamic vm consolidation using fuzzy q-learning. In: 2013 9th International Conference on Network and Service Management (CNSM), pp 332–338 (2013).  https://doi.org/10.1109/CNSM.2013.6727854
  23. 23.
    Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: 2011 12th IEEE/ACM International Conference on Grid Computing (GRID), pp 26–33 (2011).  https://doi.org/10.1109/Grid.2011.13
  24. 24.
    Pop, C.B., Anghel, I., Cioara, T., Salomie, I., Vartic, I.: A swarm-inspired data center consolidation methodology. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics, WIMS ’12, pp 41:1–41:7. ACM, New York (2012).  https://doi.org/10.1145/2254129.2254180
  25. 25.
    Marzolla, M., Babaoglu, O., Panzieri, F.: Server consolidation in clouds through gossiping. In: Proceedings of the 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WOWMOM ’11, pp 1–6. IEEE Computer Society, Washington, DC (2011).  https://doi.org/10.1109/WoWMoM.2011.5986483
  26. 26.
    Ghafari, S., Fazeli, M., Patooghy, A., Rikhtechi, L.: Bee-mmt: A load balancing method for power consumption management in cloud computing. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp 76–80 (2013).  https://doi.org/10.1109/IC3.2013.6612165
  27. 27.
    Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In: International CMG Conference, pp. 399–406. Computer Measurement Group (2007)Google Scholar
  28. 28.
    Verma, A., Ahuja, P., Neogi, A.: pmapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08, pp 243–264. Springer, New York (2008)Google Scholar
  29. 29.
    Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28 (5), 755–768 (2012).  https://doi.org/10.1016/j.future.2011.04.017 CrossRefGoogle Scholar
  30. 30.
    Guazzone, M., Anglano, C., Canonico, M.: Exploiting vm migration for the automated power and performance management of green cloud computing systems. In: Proceedings of the First International Conference on Energy Efficient Data Centers, E2DC’12, pp 81–92. Springer, Berlin (2012).  https://doi.org/10.1007/978-3-642-33645-4_8
  31. 31.
    Shi, L., Furlong, J., Wang, R.: Empirical evaluation of vector bin packing algorithms for energy efficient data centers. In: 2013 IEEE Symposium on Computers and Communications (ISCC), pp 000,009–000,015 (2013).  https://doi.org/10.1109/ISCC.2013.6754915
  32. 32.
    Tomás, L., Tordsson, J.: Improving cloud infrastructure utilization through overbooking. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference on - CAC ’13, p 1. ACM Press, New York (2013).  https://doi.org/10.1145/2494621.2494627
  33. 33.
    Dawoud, W., Takouna, I., Meinel, C.: Elastic vm for cloud resources provisioning optimization. In: Abraham, A., Lloret Mauri, J., Buford, J., Suzuki, J., Thampi, S. (eds.) Advances in Computing and Communications, Communications in Computer and Information Science, vol. 190, pp 431–445. Springer, Berlin (2011).  https://doi.org/10.1007/978-3-642-22709-7_43
  34. 34.
    Tasoulas, E., Haugerund, H.R., Begnum, K.: Bayllocator: a proactive system to predict server utilization and dynamically allocate memory resources using Bayesian networks and ballooning. In: Proceedings of the 26th International Conference on Large Installation System Administration: Strategies, Tools, and Techniques, pp. 111–122. USENIX Association (2012)Google Scholar
  35. 35.
    Hines, M.R., Gordon, A., Silva, M., Da Silva, D., Ryu, K., Ben-Yehuda, M.: Applications know best: performance-driven memory overcommit with Ginkgo. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp. 130–137. IEEE.  https://doi.org/10.1109/CloudCom.2011.27 (2011)
  36. 36.
    Litke, A.: Manage resources on overcommitted KVM hosts. Tech. rep. IBM. http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/ (2011)
  37. 37.
    De Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39(8), 2579–2590 (2013).  https://doi.org/10.1016/j.compeleceng.2013.05.004 CrossRefGoogle Scholar
  38. 38.
    Moltó, G., Caballer, M, de Alfonso, C.: Automatic memory-based vertical elasticity and oversubscription on cloud platforms. Futur. Gener. Comput. Syst. 56, 1–10 (2016).  https://doi.org/10.1016/j.future.2015.10.002 CrossRefGoogle Scholar
  39. 39.
    Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Futur. Gener. Comput. Syst. 61, 13–25 (2016).  https://doi.org/10.1016/j.future.2016.01.018. http://authors.elsevier.com/sd/article/S0167739X16300024, http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024 CrossRefGoogle Scholar
  40. 40.
    Caballer, M., Chatziangelou, M., Calatrava, A., Moltó, G., Pérez, A.: IM integration in the EGI VMOps Dashboard. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)Google Scholar
  41. 41.
    Calatrava, A., Caballer, M., Moltó, G., Pérez, A.: Virtual Elastic Clusters in the EGI LToS with EC3. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)Google Scholar
  42. 42.
    Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.: The grid workloads archive. Futur. Gener. Comput. Syst. 24(7), 672–686 (2008).  https://doi.org/10.1016/j.future.2008.02.003. http://www.sciencedirect.com/science/article/pii/S0167739X08000125 CrossRefGoogle Scholar
  43. 43.
    Nordugrid dataset, the grid workloads archive (Online; accessed 27-March-2017). http://gwa.ewi.tudelft.nl/datasets/gwa-t-3-nordugrid/report/
  44. 44.
    Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C: Dynamic Management of Virtual Infrastructures. J. Grid Comput. 13, 53–70 (2015).  https://doi.org/10.1007/s10723-014-9296-5. http://link.springer.com/article/10.1007/s10723-014-9296-5 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Carlos de Alfonso
    • 1
    Email author
  • Miguel Caballer
    • 1
  • Amanda Calatrava
    • 1
  • Germán Moltó
    • 1
  • Ignacio Blanquer
    • 1
  1. 1.Instituto de Instrumentación para Imagen Molecular (I3M)Centro mixto CSIC - Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations