Advertisement

Towards the Dynamic Community Discovery in Decentralized Online Social Networks

  • Barbara Guidi
  • Andrea Michienzi
  • Giulio Rossetti
Article

Abstract

The community structure is one of the most studied features of the Online Social Networks (OSNs). Community detection guarantees several advantages for both centralized and decentralized social networks. Decentralized Online Social Networks (DOSNs) have been proposed to provide more control over private data. Several challenges in DOSNs can be faced by exploiting communities. The detection of communities and the management of their evolution represents a hard process, especially in highly dynamic environments, where churn is a real problem. In this paper, we focus our attention on the analysis of dynamic community detection in DOSNs by studying a real Facebook dataset. We evaluate two different dynamic community discovery classes to understand which of them can be applied to a distributed environment. Results prove that the social graph has high instability and distributed solutions to manage the dynamism are needed and show that a Temporal Trade-off class is the most promising one.

Keywords

Decentralized Online Social Networks P2P Dynamic community detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aynaud, T., Fleury, E., Guillaume, J.-L., Wang, Q.: Communities in evolving networks: definitions, detection, and analysis techniques. In: Dynamics On and Off Complex Networks, vol 2, pp. 159–200. Springer, Berlin (2013)Google Scholar
  2. 2.
    Buchegger, S., Schioberg, D., Vu, L.H., Datta, A.: Implementing a P2P social network - early experiences and insights from peerSoN. In: Second ACM Workshop on Social Network Systems (Co-located with EuroSys (2009)Google Scholar
  3. 3.
    Cazabet, R., Amblard, F.: Dynamic community detection. In: Encyclopedia of Social Network Analysis and Mining, pp. 404–414. Springer, Berlin (2014)Google Scholar
  4. 4.
    Clementi, A.E.F., Di Ianni, M., Gambosi, G., Natale, E., Silvestri, R.: Distributed community detection in dynamic graphs. CoRR arXiv:1302.5607 (2013)
  5. 5.
    Conti, M., De Salve, A., Guidi, B., Ricci, L.: Epidemic diffusion of social updates in dunbar-based dosn. In: European Conference on Parallel Processing, pp. 311–322 (2014)Google Scholar
  6. 6.
    Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery methods in complex networks. Stat. Anal. Data Min.: The ASA Data Science Journal 4(5), 512–546 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Demon: a local-first discovery method for overlapping communities. In: SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 615–623. IEEE ACM (2012)Google Scholar
  8. 8.
    Cutillo, L.A., Molva, R., Strufe, T.: Safebook: a privacy-preserving online social network leveraging on real-life trust. Comm. Mag. 47(12), 94–101 (2009)CrossRefGoogle Scholar
  9. 9.
    Datta, A., Buchegger, S., Vu, L.-H., Strufe, T., Rzadca, K.: Decentralized online social networks. In: Handbook of Social Network Technologies and Applications, pp. 349–378. Springer, Berlin (2010)Google Scholar
  10. 10.
    De Salve, A., Dondio, M., Guidi, B., Ricci, L.: The impact of user’s availability on on-line ego networks: a Facebook analysis. Comput. Commun. 73, 211–218 (2016)CrossRefGoogle Scholar
  11. 11.
    De Salve, A., Guidi, B., Mori, P., Ricci, L.: Distributed coverage of ego networks in f2f online social networks. In: Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences, pp. 423–431 (2016)Google Scholar
  12. 12.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Graffi, K., Gross, C., Mukherjee, P., Kovacevic, A., Steinmetz, R.: Lifesocial.kom: a p2p-based platform for secure online social networks. In: Peer-to-Peer Computing, pp. 1–2. IEEE (2010)Google Scholar
  14. 14.
    Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: Proceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining, ASONAM ’10, pp. 176–183 (2010)Google Scholar
  15. 15.
    Guidi, B., Conti, M., Ricci, L.: P2p architectures for distributed online social networks. In: 2013 International Conference on High Performance Computing and Simulation (HPCS), pp. 678–681. IEEE (2013)Google Scholar
  16. 16.
    Guidi, B., Amft, T., De Salve, A., Graffi, K., Ricci, L.: Didusonet: a p2p architecture for distributed dunbar-based social networks. In: Peer-to-Peer Networking and Applications, pp. 1–18 (2015)Google Scholar
  17. 17.
    Guidi, B., Michienzi, A., Rossetti, G.: Dynamic community analysis in decentralized online social networks. In: International European Conference on Parallel and Distributed Computing (Euro-Par), LSDVE Workshop (2017)Google Scholar
  18. 18.
    Herbiet, G.J., Bouvry, P.: Sharc: community-based partitioning for mobile ad hoc networks using neighborhood similarity. In: 2010 IEEE International Symposium on “A World of Wireless, Mobile and Multimedia Networks”, pp. 1–9 (2010)Google Scholar
  19. 19.
    Hui, P., Yoneki, E., Chan, S.Y., Crowcroft, J.: Distributed community detection in delay tolerant networks. In: Proceedings of 2nd ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture, pp. 1–8 (2007)Google Scholar
  20. 20.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05, pp. 177–187. ACM, New York (2005)Google Scholar
  21. 21.
    Marsden, P.: Egocentric and sociocentric measures of network centrality. Soc. Networks 24(4), 407–422 (2002)CrossRefGoogle Scholar
  22. 22.
    Narendula, R., Papaioannou, T.G., Aberer, K.: My3: a highly-available p2p-based online social network. In: 2011 IEEE International Conference on Peer-to-Peer Computing (P2P), pp. 166–167, IEEE (2011)Google Scholar
  23. 23.
    Nilizadeh, S., Jahid, S., Mittal, P., Borisov, N., Kapadia, A.: Cachet: a decentralized architecture for privacy preserving social networking with caching. In: Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, CoNEXT ’12, pp. 337–348. ACM (2012)Google Scholar
  24. 24.
    Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)CrossRefGoogle Scholar
  25. 25.
    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)CrossRefGoogle Scholar
  26. 26.
    Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. Technical report (2017)Google Scholar
  27. 27.
    Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. Mach. Learn. 106(8), 1213–1241 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    De Salve, A., Guidi, B., Ricci, L.: Evaluation of structural and temporal properties of ego networks for data availability in DOSNs. Mobile Netw. Appl. 23(1), 155–166 (2018)CrossRefGoogle Scholar
  29. 29.
    Takaffoli, M., Sangi, F., Fagnan, J., Zäıane, O.R.: Community evolution mining in dynamic social networks. Procedia Soc. Behav. Sci. 22, 49–58 (2011)CrossRefGoogle Scholar
  30. 30.
    Takaffoli, M., Sangi, F., Fagnan, J., Zaïane, O.R.: Modec-modeling and detecting evolutions of communities. In: 5th International Conference on Weblogs and Social Media (ICWSM), pp. 30–41. AAAI (2011)Google Scholar
  31. 31.
    Takaffoli, M., Rabbany, R., Zaïane, O.R.: Community evolution prediction in dynamic social networks. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 9–16 (2014)Google Scholar
  32. 32.
    Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding replication in databases and distributed systems. In: 20th International Conference on Distributed Computing Systems, 2000. Proceedings, pp. 464–474. IEEE (2000)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PisaPisaItaly
  2. 2.ISTI - CNRPisaItaly

Personalised recommendations