Journal of Grid Computing

, Volume 17, Issue 1, pp 169–189 | Cite as

A Lightweight Service Placement Approach for Community Network Micro-Clouds

  • Mennan SelimiEmail author
  • Llorenç Cerdà-Alabern
  • Felix Freitag
  • Luís Veiga
  • Arjuna Sathiaseelan
  • Jon Crowcroft
Open Access


Community networks (CNs) have gained momentum in the last few years with the increasing number of spontaneously deployed WiFi hotspots and home networks. These networks, owned and managed by volunteers, offer various services to their members and to the public. While Internet access is the most popular service, the provision of services of local interest within the network is enabled by the emerging technology of CN micro-clouds. By putting services closer to users, micro-clouds pursue not only a better service performance, but also a low entry barrier for the deployment of mainstream Internet services within the CN. Unfortunately, the provisioning of these services is not so simple. Due to the large and irregular topology, high software and hardware diversity of CNs, a “careful” placement of micro-clouds services over the network is required to optimize service performance. This paper proposes to leverage state information about the network to inform service placement decisions, and to do so through a fast heuristic algorithm, which is critical to quickly react to changing conditions. To evaluate its performance, we compare our heuristic with one based on random placement in, the biggest CN worldwide. Our experimental results show that our heuristic consistently outperforms random placement by 2x in bandwidth gain. We quantify the benefits of our heuristic on a real live video-streaming service, and demonstrate that video chunk losses decrease significantly, attaining a 37% decrease in the packet loss rate. Further, using a popular Web 2.0 service, we demonstrate that the client response times decrease up to an order of magnitude when using our heuristic. Since these improvements translate in the QoE (Quality of Experience) perceived by the user, our results are relevant for contributing to higher QoE, a crucial parameter for using services from volunteer-based systems and adapting CN micro-clouds as an eco-system for service deployment.


Service placement Community networks Micro-clouds Edge-clouds Wireless mesh networks 



This work was supported by the European H2020 framework program projects RIFE (H2020-644663), netCommons (H2020-688768), LightKone (H2020-732505), and by the Spanish government under contract TIN2016-77836-C2-2-R. This work was also supported by the national funds through Fundação para a Ciência e a Tecnologia in project ContexTWA with reference PTDC/EEI-SCR/6945/2014.


  1. 1.
  2. 2.
    Agarwal, S., et al.: Volley: automated data placement for geo-distributed cloud services. In: Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, NSDI’10, pp. 2–2. USENIX Association, Berkeley (2010)Google Scholar
  3. 3.
    Alicherry, M., Lakshman, T.V.: Network aware resource allocation in distributed clouds. In: Proceedings of INFOCOM, IEEE, pp. 963–971 (2012)Google Scholar
  4. 4.
    Apolónia, N., Freitag, F., Navarro, L.: Leveraging deployment models on low-resource devices for cloud services in community networks. Simul. Model. Pract. Theory 77, 390–406 (2016)Google Scholar
  5. 5.
    Baig, R., Dalmau, L., Roca, R., Navarro, L., Freitag, F., Sathiaseelan, A.: Making Community Networks Economically Sustainable, the Guifi.Net Experience. GAIA ’16, pp. 31–36. ACM, New York (2016)Google Scholar
  6. 6.
    Baig, R., Freitag, F., Navarro, L.: Cloudy in establishing and sustaining a community cloud as open commons. Futur. Gener. Comput. Syst. (2018)Google Scholar
  7. 7.
    Baig, R., Roca, R., Freitag, F., Navarro, L.:, a crowdsourced network infrastructure held in common. Comput. Netw. 90, 150–165 (2015). CrowdsourcingCrossRefGoogle Scholar
  8. 8.
    Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R.: Intelligent assistance for data pre-processing. Computer Standards & Interfaces 57, 101–109 (2018)CrossRefGoogle Scholar
  9. 9.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12, pp. 13–16. ACM, New York (2012)Google Scholar
  10. 10.
    Cerdà-Alabern, L., Neumann, A., Escrich, P.: Experimental evaluation of a wireless community mesh network. In: Proceedings of the 16th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’13, pp. 23–30. ACM, New York (2013)Google Scholar
  11. 11.
    Coimbra, M.E., Selimi, M., Francisco, A.P., Freitag, F., Veiga, L.: Gelly-scheduling distributed graph processing for service placement in community networks. In: 33rd ACM/SIGAPP Symposium on Applied Computing (SAC 2018). ACM (2018)Google Scholar
  12. 12.
    Dimogerontakis, E., Meseguer, R., Navarro, L.: Internet Access for All: Assessing a Crowdsourced Web Proxy Service in a Community Network, pp. 72–84. Springer International Publishing, Cham (2017)Google Scholar
  13. 13.
    Dimogerontakis, E., Neto, J., Meseguer, R., Navarro, L.: Client-side routing-agnostic gateway selection for heterogeneous wireless mesh networks. In: IFIP/IEEE International Symposium on Integrated Network Management (IM) (2017)Google Scholar
  14. 14.
    Draxler, S., Karl, H., Mann, Z.A.: Joint optimization of scaling and placement of virtual network services. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 365–370 (2017)Google Scholar
  15. 15.
    Dubois, D.J., Valetto, G., Lucia, D., Di Nitto, E.: Mycocloud: elasticity through self-organized service placement in decentralized clouds. In: 2015 IEEE 8th International Conference on Cloud Computing, pp. 629–636 (2015)Google Scholar
  16. 16.
    Ghanbari, H., et al.: Replica placement in cloud through simple stochastic model predictive control. In: 2014 IEEE 7th International Conference on Cloud Computing, pp. 80–87 (2014)Google Scholar
  17. 17.
    Herrmann, K.: Self-organized service placement in ambient intelligence environments. ACM Trans. Auton. Adapt. Syst. 5(2), 6:1–6:39 (2010)CrossRefGoogle Scholar
  18. 18.
    Klein, A., Ishikawa, F., Honiden, S.: Towards network-aware service composition in the cloud. In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pp. 959–968. ACM, New York (2012)Google Scholar
  19. 19.
    LaCurts, K., et al.: Choreo: network-aware task placement for cloud applications. In: Proceedings of the 2013 Conference on Internet Measurement Conference, IMC ’13, pp. 191–204. ACM, New York (2013)Google Scholar
  20. 20.
    Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009)CrossRefGoogle Scholar
  21. 21.
    Lertsinsrubtavee, A., Ali, A., Molina-Jimenez, C., Sathiaseelan, A., Crowcroft, J.: Picasso: a lightweight edge computing platform. In: IEEE 6th International Conference on Cloud Networking (Cloudnet’17) (2017)Google Scholar
  22. 22.
    Machen, A., Wang, S., Leung, K.K., Ko, B.J., Salonidis, T.: Live service migration in mobile edge clouds. In: IEEE Wireless Communications (2017)Google Scholar
  23. 23.
    Moens, H., et al.: Hierarchical network-aware placement of service oriented applications in clouds. In: 2014 IEEE Network Operations and Management Symposium (NOMS), pp. 1–8 (2014)Google Scholar
  24. 24.
    Naas, M.I., Raipin, P., Boukhobza, J., Lemarchand, L.: iFogStor: an IoT data placement strategy for fog infrastructure. In: IEEE 1st International Conference on Fog and Edge Computing. Madrid, Spain (2017)Google Scholar
  25. 25.
    Neumann, A., Lopez, E., Navarro, L.: An evaluation of Bmx6 for community wireless networks. In: 8th IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (Wimob), 2012 I, pp. 651–658 (2012)Google Scholar
  26. 26.
    Palit, T., Shen, Y., Ferdman, M.: Demystifying cloud benchmarking. In: 2016 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 122–132 (2016)Google Scholar
  27. 27.
    Selimi, M., Cerdà-Alabern, L., Sánchez-Artigas, M., Freitag, F., Veiga, L.: Practical service placement approach for microservices architecture. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid ’17, pp. 401–410. IEEE Press, Piscataway (2017)Google Scholar
  28. 28.
    Selimi, M., et al.: Integration of an assisted P2p live streaming service in community network clouds. In: Proceedings of the IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom 2015). IEEE (2015)Google Scholar
  29. 29.
    Selimi, M., Freitag, F., Cerdà-Alabern, L., Veiga, L.: Performance evaluation of a distributed storage service in community network clouds. Concurrency and Computation: Practice and Experience 28(11), 3131–3148 (2016). cpe.3658CrossRefGoogle Scholar
  30. 30.
    Selimi, M., Khan, A.M., Dimogerontakis, E., Freitag, F., Centelles, R.P.: Cloud services in the community network. Comput. Netw. 93, Part 2:373–388 (2015)CrossRefGoogle Scholar
  31. 31.
    Selimi, M., Vega, D., Freitag, F., Veiga, L.: Towards Network-Aware Service Placement in Community Network Micro-Clouds, pp. 376–388. Springer International Publishing, Berlin (2016)Google Scholar
  32. 32.
    Sharifi, L., Cerdà-Alabern, L., Freitag, F., Veiga, L.: Energy efficient cloud service provisioning: keeping data center granularity in perspective. Journal of Grid Computing 14(2), 299–325 (2016)CrossRefGoogle Scholar
  33. 33.
    Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S.: Towards Qos-aware fog service placement. In: IEEE International Conference on Fog and Edge Computing (ICFEC 2017). Madrid, Spain (2017)Google Scholar
  34. 34.
    Spinnewyn, B., Braem, B., Latré, S.: Fault-tolerant application placement in heterogeneous cloud environments. In: Network and Service Management (CNSM), pp. 192–200 (2015)Google Scholar
  35. 35.
    Spinnewyn, B., Mennes, R., Botero, J.F., Latré, S.: Resilient application placement for geo-distributed cloud networks. J. Netw. Comput. Appl. 85, 14–31 (2017). Intelligent Systems for Heterogeneous NetworksCrossRefGoogle Scholar
  36. 36.
    Steiner, M., et al.: Network-aware service placement in a distributed cloud environment. In: Proceedings of the ACM SIGCOMM 2012 Conference, SIGCOMM ’12, pp. 73–74. ACM, New York (2012)Google Scholar
  37. 37.
    Tantawi, A.N.: Solution biasing for optimized cloud workload placement. In: 2016 IEEE International Conference on Autonomic Computing (ICAC), pp. 105–110 (2016)Google Scholar
  38. 38.
    Tarneberg, W., Mehta, A., Wadbro, E., Tordsson, J., Eker, J., Kihl, M., Elmroth, E.: Dynamic application placement in the mobile cloud network. Futur. Gener. Comput. Syst. 70, 163–177 (2017)CrossRefGoogle Scholar
  39. 39.
    Urgaonkar, R., Wang, S., He, T., Zafer, M., Chan, K., Leung, K.K.: Dynamic service migration and workload scheduling in edge-clouds. Perform. Eval. 91, 205–228 (2015)CrossRefGoogle Scholar
  40. 40.
    Vega, D., Meseguer, R., Cabrera, G., Marques, J.M.: Exploring local service allocation in community networks. In: 10th International Conference on Wireless and Mobile Computing, Networking and Communications (Wimob’14), IEEE, pp. 273–280 (2014)Google Scholar
  41. 41.
    Vega, D., Baig, R., Cerdà-Alabern, L., Medina, E., Meseguer, R., Navarro, L.: A technological overview of the community network. Comput. Netw. 93, Part 2:260–278 (2015)CrossRefGoogle Scholar
  42. 42.
    Vega, D., Cerdà-Alabern, L., Navarro, L., Meseguer, R.: Topology patterns of a community network: In: 1st International Workshop on Community Networks and Bottom-Up-Broadband (CNBub 2012), within IEEE Wimob. Barcelona, Spain, pp. 612–619 (2012)Google Scholar
  43. 43.
    Verespej, H., Pasquale, J.: A characterization of node uptime distributions in the Planetlab test bed. In: 2011 IEEE 30th International Symposium on Reliable Distributed Systems, pp. 203–208 (2011)Google Scholar
  44. 44.
    Wang, L., Bayhan, S., Ott, J., Kangasharju, J., Sathiaseelan, A., Crowcroft, J.: Pro-diluvian: understanding scoped-flooding for content discovery in information-centric networking, pp. 9–18. ACM, New York (2015)Google Scholar
  45. 45.
    Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applications in edge computing environments. IEEE ACCESS 5, 2514–2533 (2017)CrossRefGoogle Scholar
  46. 46.
    Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer, M., Leung, K.K.: Dynamic service placement for mobile micro-clouds with predicted future costs. IEEE Trans. Parallel Distrib. Syst. 28(4), 1002–1016 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.University of CambridgeCambridgeUK
  2. 2.Universitat Politècnica de Catalunya, BarcelonaTechBarcelonaSpain
  3. 3.Instituto Superior Técnico (IST), INESC-ID LisboaLisbonPortugal

Personalised recommendations