Advertisement

Journal of Grid Computing

, Volume 16, Issue 1, pp 19–37 | Cite as

Occopus: a Multi-Cloud Orchestrator to Deploy and Manage Complex Scientific Infrastructures

  • József Kovács
  • Péter Kacsuk
Article

Abstract

This paper presents Occopus, an open-source cloud orchestration and management framework for heterogeneous multi-cloud platforms. Occopus provides a language to specify infrastructure descriptions and node definitions based on which Occopus can automatically deploy and maintain the specified virtual infrastructures in the target clouds. The paper introduces the required structure of the infrastructure descriptions and node definitions in an informal way and shows two use cases (Hadoop cluster and MICADO framework) how Occopus can be used to deploy complex virtual infrastructures. The paper also explains the architecture and implementation aspects of Occopus and describes its main distinguishing features compared to other cloud orchestrator frameworks.

Keywords

Cloud Orchestration Multi-cloud Deployment Virtualization Docker Hadoop Scaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially funded by the European COLA - Cloud Orchestration at the Level of Application project under grant No. 731574 (H2020-ICT-2016-1), and by the European Union Horizon 2020 research and innovation program under grant No. 644179 (ENTICE), and by the National Research, Development and Innovation Fund of Hungary under grant No. VKSZ 12-1-2013-0024 (Agrodat.hu), and by the International Science & Technology Cooperation Program of China under grant No. 2015DFE12860. On behalf of the Occopus project we thank for the usage of MTA Cloud (https://cloud.mta.hu/) that significantly helped us achieving the results published in this paper. The authors are grateful to Botond Rákóczi and Enikő Nagy for their valuable help in producing the presented use cases.

References

  1. 1.
    Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing: Principles and Paradigms. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  2. 2.
    Sahoo, J., Mohapatra, S., Lath, R.: Virtualization: a survey on concepts, taxonomy and associated security issues. In: 2010 Second International Conference on Computer and Network Technology, IEEE, Bangkok, Thailand, pp. 222–226 (2010)Google Scholar
  3. 3.
    The MTA Cloud infrastructure, https://cloud.mta.hu
  4. 4.
    Mell, P., Grance, T.: The NIST definition of Cloud computing. NIST Special Publication 800-145 (Final) Technical Report. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (2011)
  5. 5.
  6. 6.
    Chadwick, D.W., Siu, K., Lee, C., Fouillat, Y., Germonville, D.: Adding federated identity management to openstack. J Grid Comput. 12(1), 3–27 (2014)CrossRefGoogle Scholar
  7. 7.
    Toraldo, G.: OpenNebula 3 Cloud Computing, Packt Publishing Ltd. ISBN1849517479, 9781849517478 (2012)Google Scholar
  8. 8.
    AgroDAT.hu project, http://agrodat.hu
  9. 9.
    COLA: Cloud Orchestration at the Level of Application, http://www.project-cola.eu
  10. 10.
  11. 11.
    Amazon Web Services, https://aws.amazon.com
  12. 12.
  13. 13.
  14. 14.
    Petcu, D.: Consuming resources and services from multiple clouds. J of Grid Comput. 12.2, 321–345 (2014)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Heap, M.: Ansible: From Beginner to Pro, Apress, eBook ISBN 978-1-4842-1659-0,  https://doi.org/10.1007/978-1-4842-1659-0, Softcover ISBN 978-1-4842-1660-6, Number of Pages XVII, 170 (2016)
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    Peinl, R., Holzschuher, F., Pfitzer, F.: Docker cluster management for the cloud-survey results and own solution. J Grid Comput. 14.2, 265–282 (2016)CrossRefGoogle Scholar
  21. 21.
    Netto, H.V., Lung, L.C., Correia, M., Luiz, A.F., de Souza, L.M.: State machine replication in containers managed by Kubernetes. J Syst. Archit. 73, 53–59 (2017). ISSN 1383–7621CrossRefGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
    Apache libcloud, https://libcloud.apache.org
  25. 25.
    boto: A Python interface to Amazon Web Services, http://boto.cloudhackers.com
  26. 26.
  27. 27.
  28. 28.
    Ironic Support in Red Hat OpenStack Platform, https://access.redhat.com/articles/2331251
  29. 29.
    Pham, L.M., Tchana, A., Donsez, D., De Palma, N., Zurczak, V., et al.: Roboconf: a hybrid cloud orchestrator to deploy complex applications. In: 2015 IEEE 8Th International Conference on Cloud Computing, New York, United States (2015).  https://doi.org/10.1109/CLOUD.2015.56.hal-01228353
  30. 30.
    Wang, X., Liu, Z., Qi, Y., Li, J.: Livecloud: a lucid orchestrator for cloud datacenters. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, Taipei, pp. 341–348 (2012).  https://doi.org/10.1109/CloudCom.2012.6427544
  31. 31.
    Le, D.-H., Truong, H.-L., Copil, G., Nastic, S., Dustdar, S.: SALSA: a framework for dynamic configuration of cloud services. In: Proceedings of the 2014 IEEE 6th International Conference on Cloud Computing Technology and Science (CLOUDCOM ’14), pp. 146–153. IEEE Computer Society, Washington, DC (2014).  https://doi.org/10.1109/CloudCom.2014.99
  32. 32.
    Caballer, M., Segrelles, D., Moltó, G., Blanquer, I.: A platform to deploy customized scientific virtual infrastructures on the cloud. Concurrency Computat.: Pract. Exper. 27, 4318–4329 (2015).  https://doi.org/10.1002/cpe.3518 CrossRefGoogle Scholar
  33. 33.
    Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. J. Grid Comput. 13(1), 53–70 (2015)CrossRefGoogle Scholar
  34. 34.
  35. 35.
  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.
    Merkel, D.: Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014, 239 (2014)Google Scholar
  41. 41.
  42. 42.
  43. 43.
  44. 44.
    YAML Ain’t Markup Language, http://yaml.org
  45. 45.
    Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), Incline Village, NV, USA, pp. 1–10 (2010)Google Scholar
  46. 46.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  47. 47.
  48. 48.
    Visti, H., Kiss, T., Terstyanszky, G., Gesmier, G., Winter, S.: MiCADO – Towards a Microservice-based Cloud Application-level Dynamic Orchestrator, Proceedings of IWSG’2016, Rome (2016)Google Scholar
  49. 49.
  50. 50.
    Occopus source code repository, https://github.com/occopus
  51. 51.
    TOSCA: Topology and orchestration specification for cloud applications version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html (2013)

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute for Computer Science and ControlHungarian Academy of SciencesBudapestHungary
  2. 2.Center for Parallel Computing, School of Computer ScienceUniversity of WestminsterLondonUK

Personalised recommendations