Advertisement

Journal of Grid Computing

, Volume 15, Issue 4, pp 527–534 | Cite as

Computing Extremely Large Values of the Riemann Zeta Function

  • Norbert Tihanyi
  • Attila Kovács
  • József Kovács
Article
  • 66 Downloads

Abstract

The paper summarizes the computation results pursuing peak values of the Riemann zeta function. The computing method is based on the RS-Peak algorithm by which we are able to solve simultaneous Diophantine approximation problems efficiently. The computation environment was served by the SZTAKI Desktop Grid operated by the Laboratory of Parallel and Distributed Systems at the Hungarian Academy of Sciences and the ATLAS supercomputing cluster of the Eötvös Loránd University, Budapest. We present the largest Riemann zeta value known till the end of 2016.

Keywords

Riemann zeta function Distributed computing Large Z(t) values 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge the constructive comments of Ghaith A. Hiary. We would like to thank the valuable suggestions for the anonymous reviewers. The authors would like to thank the opportunity for accessing to the ATLAS Super Cluster operating at Eötvös Loránd University and for using the capacity of SZTAKI Desktop Grid project operated by the Laboratory of Parallel and Distributed Systems in the Institute for Computer Science and Control of the Hungarian Academy of Sciences.

References

  1. 1.
    Brent, R.P.: On the zeros of the Riemann Zeta function in the critical strip. Math. Comp. 33(148), 1361–1372 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Sherman Lehman, R.: Separation of zeros of the Riemann Zeta-Function. Math. Comp. 20, 523–541 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hiary, G.A.: Fast methods to compute the Riemann Zeta function. Ann. Math. 174-2, 891–946 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Odlyzko, A.M., Schönhage, A.: Fast algorithms for multiple evaluations of the Riemann Zeta function. Trans. Am. Math. Soc. 309, 797–809 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gourdon, X.: The 1013-rst zeros of the Riemann Zeta function, and zeros computation at very large height. http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf. Accessed 5 December 2016 (2004)
  6. 6.
    Tihanyi, N.: Fast method for locating peak values of the Riemann Zeta function on the critical line. In: Sixteenth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE Explorer.  https://doi.org/10.1109/SYNASC.2014.20 (2014)
  7. 7.
    Odlyzko, A.M.: The 1020-th zero of the riemann zeta function and 175 million of its neighbors. http://www.dtc.umn.edu/∼odlyzko/unpublished/. Accessed 5 December 2016 (1992)
  8. 8.
    Bober, J.W., Hiary, G.A.: New computations of the Riemann Zeta function on the critical line. Exp. Math., 27, 1–13 (2016)Google Scholar
  9. 9.
    Kotnik, Tadej: Computational estimation of the order of ζ(1/2 + i t). Math. Comp. 73(246), 949–956 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lenstra, A.K., Lenstra, H. Jr, Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)Google Scholar
  11. 11.
    Kovács, A., Tihanyi, N.: Efficient computing of n-dimensional simultaneous Diophantie approximation problems. Acta Univ. Sapientiae, Informatica 5-1, 16–34 (2013)zbMATHGoogle Scholar
  12. 12.
    Tihanyi, N., Kovács, A., Szücs, Á.: Distributed computing of simultaneous Diophantine approximation problems. Stud. Univ. Babes-Bolyai Math. 59(4), 557–566 (2014)MathSciNetGoogle Scholar
  13. 13.
    Bourgain, J.: Decoupling, exponential sums and the Riemann Zeta function. J. Am. Math. Soc. 30 (1), 205–224 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kacsuk, P., Kovács, J., Farkas, Z., et al.: SZTAKI desktop grid (SZDG): a flexible and scalable desktop grid system. Journal of Grid Computing, Special Issue: Volunteer Computing and Desktop Grids 7(4), 439–461 (2009)CrossRefGoogle Scholar
  15. 15.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing (GRID ’04). IEEE Computer Society, Washington, DC, USAGoogle Scholar
  16. 16.
    The SZTAKI desktop grid BOINC project. http://szdg.lpds.sztaki.hu/szdg. Accessed 5 December 2016
  17. 17.
    Peak performance of intel CPU’s. http://download.intel.com/support/processors/xeon/sb/xeon_5500.pdf. Accessed 5 December 2016
  18. 18.
    van de Lune, J., te Riele, H.J.J., Winter, D.T.: On the zeros of the Riemann Zeta function in the critical strip. IV. Math. Comp. 46, 667–681 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hiary, G.A.: A nearly-optimal method to compute the truncated theta function, its derivatives, and integrals. Annals of Math. 174, 859–889 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Eötvös Loránd UniversityBudapestHungary
  2. 2.Institute for Computer Science and ControlBudapestHungary

Personalised recommendations