Journal of Grid Computing

, Volume 15, Issue 1, pp 55–80 | Cite as

A Two-Phase Energy-Aware Scheduling Approach for CPU-Intensive Jobs in Mobile Grids

  • Matías Hirsch
  • Juan Manuel Rodríguez
  • Cristian Mateos
  • Alejandro Zunino


The profusion of mobile devices over the world and their evolved computational capabilities promote their inclusion as resource providers in traditional Grid environments. However, their efficient exploitation requires adapting current schedulers to operate with computing capabilities limited by energy supply and mobile devices that cannot be assumed to be dedicated, among other concerns. We propose a two-phase scheduling approach for running CPU-intensive jobs on mobile devices that combines novel energy-aware criteria with job stealing techniques. The approach was evaluated through an event-based simulator that uses battery consumption profiles extracted from real mobile devices. CPU usage derived from non-Grid processes was also modelled. For evaluating the first phase we compared the number of finalized jobs by all energy-aware criteria, while for the second phase we analyzed the performance boost introduced by job stealing. While the best first phase criteria finalized up to 90 % of submitted jobs, job stealing increased this percentage by up to 9 %.


Mobile grid Mobile devices CPU intensive application Job scheduling Job stealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huynh, D., Knezevic, D., Peterson, J., Patera, A.: High-fidelity real-time simulation on deployed platforms. Comput. Fluids 43(1), 74–81 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ryabinin, K., Chuprina, S.: Adaptive scientific visualization system for desktop computers and mobile devices. Procedia Computer Science 18(0), 722–731 (2013)CrossRefGoogle Scholar
  3. 3.
    Shiraz, M., Gani, A., Shamim, A., Khan, S., Ahmad, R.: Energy efficient computational offloading framework for mobile cloud computing. Journal of Grid Computing 13(1), 1–18 (2015)CrossRefGoogle Scholar
  4. 4.
    Khan, A.u.R., Othman, M., Khan, A., Abid, S., Madani, S.: Mobibyte: An application development model for mobile cloud computing. Journal of Grid Computing, 1–24 (2015)Google Scholar
  5. 5.
    Rodriguez, J.M., Mateos, C., Zunino, A.: Are smartphones really useful for scientific computing?. Lect. Notes Comput. Sci 7547, 38–47 (2012)CrossRefGoogle Scholar
  6. 6.
    Karan, O., Bayraktar, C., Gümüşkaya, H., Karlik, B.: Diagnosing diabetes using neural networks on small mobile devices. Expert Syst. Appl. 39(1), 54–60 (2012)CrossRefGoogle Scholar
  7. 7.
    Rodriguez, J.M., Mateos, C., Zunino, A.: Energy-efficient job stealing for cpu-intensive processing in mobile devices. Computing 96(2), 87–117 (2014)CrossRefzbMATHGoogle Scholar
  8. 8.
    Rodriguez, J.M., Zunino, A., Campo, M.: Mobile Grid Seas: Simple Energy-Aware Scheduler. In: 3Rd High-Performance Computing Symposium. 39Th JAIIO (2010)Google Scholar
  9. 9.
    Ghosh, P., Das, S.K.: Mobility-aware cost-efficient job scheduling for single-class grid jobs in a generic mobile grid architecture. Futur. Gener. Comput. Syst. 26(8), 1356–1367 (2010)CrossRefGoogle Scholar
  10. 10.
    Rodriguez, J.M., Zunino, A., Campo, M.: Introducing mobile devices into grid systems: a survey. International Journal of Web and Grid Services 7(1), 1–40 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, C., Li, L.: Tradeoffs between energy consumption and qos in mobile grid. J. Supercomput. 55, 367–399 (2011)CrossRefGoogle Scholar
  12. 12.
    Aron, J.: Harness unused smartphone power for a computing boost. New Scientist, 215 (2880)Google Scholar
  13. 13.
    Li, W., Wu, J., Zhang, Q., Hu, K., Li, J.: Trust-driven and qos demand clustering analysis based cloud workflow scheduling strategies. Clust. Comput., 1–18 (2014)Google Scholar
  14. 14.
    Callou, G., Maciel, P., Tavares, E., Andrade, E., Nogueira, B., Araujo, C., Cunha, P.: Energy consumption and execution time estimation of embedded system applications. Microprocess. Microsyst. 35(4), 426–440 (2011)CrossRefGoogle Scholar
  15. 15.
    Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time problem – overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 36:1–36:53 (2008)CrossRefGoogle Scholar
  16. 16.
    Serrano, P., de la Oliva, A., Patras, P., Mancuso, V., Banchs, A.: Greening wireless communications: Status and future directions. Comput. Commun. 35(14), 1651–1661 (2012)CrossRefGoogle Scholar
  17. 17.
    Arroqui, M., Mateos, C., Machado, C., Zunino, A.: RESTful web services improve the efficiency of data transfer of a whole-farm simulator accessed by android smartphones. Comput. Electron. Agric. 87(0), 14–18 (2012)CrossRefGoogle Scholar
  18. 18.
    Thiagarajan, N., Aggarwal, G., Nicoara, A., Boneh, D., Singh, J.P.. In: Proceedings of the 21St International Conference on World Wide Web, WWW’12. Who Killed My Battery?: Analyzing Mobile Browser Energy Consumption, pp. 41–50. ACM, New York (2012)CrossRefGoogle Scholar
  19. 19.
    Mahapatra, R., Domenico, A.D., Gupta, R., Strinati, E.C.: Green framework for future heterogeneous wireless networks. Comput. Netw. 57(6), 1518–1528 (2013)CrossRefGoogle Scholar
  20. 20.
    Nicolaos, A., Vasileios, K., George, A., Harris, M., Angeliki, K., Costas, G.: A data locality methodology for matrix-matrix multiplication algorithm. J. Supercomput. 59, 830–851 (2012)CrossRefGoogle Scholar
  21. 21.
    Hermelin, D., Rawitz, D., Rizzi, R., Vialette, S.: The minimum substring cover problem. Information and Computation/information and Control - IANDC 206, 1303–1312 (2008)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Baron, R., Lioubashevski, O., Katz, E., Niazov, T., Willner, I.: Elementary arithmetic operations by enzymes: a model for metabolic pathway based computing. Angew. Chem. Int. Ed. 45, 1572–1576 (2006)CrossRefGoogle Scholar
  23. 23.
    Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: Proceedings of the 8th international conference on Mobile systems, applications, and services, ACM, pp. 179–194 (2010)Google Scholar
  24. 24.
    Busching, F., Schildt, S., Wolf, L.: Droidcluster: Towards smartphone cluster computing – the streets are paved with potential computer clusters. In: 2012 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 114–117 (2012)Google Scholar
  25. 25.
    Rodriguez, A.V., Mateos, C., Zunino, A.: Mobile Devices-Aware Refactorings for Scientific Computational Kernels. In: 13Th Argentine Symposium on Technology, AST 2012 (2012). 41Th JAIIO Google Scholar
  26. 26.
    Li, C., Li, L.: A multi-agent-based model for service-oriented interaction in a mobile grid computing environment. Pervasive and Mobile Computing 7(2), 270–284 (2011)CrossRefGoogle Scholar
  27. 27.
    Chunlin, L., Layuan, L.: Exploiting composition of mobile devices for maximizing user qos under energy constraints in mobile grid. Inf. Sci. 279(0), 654–670 (2014)CrossRefGoogle Scholar
  28. 28.
    Shah, S.C.: Energy efficient and robust allocation of interdependent tasks on mobile ad hoc computational grid, Concurrency and Computation: Practice and ExperienceGoogle Scholar
  29. 29.
    Wei, X., Fan, J., Lu, Z., Ding, K.: Application scheduling in mobile cloud computing with load balancing. J. Appl. Math (2013)Google Scholar
  30. 30.
    Shah, S., Park, M.S.: An energy-efficient resource allocation scheme for mobile ad hoc computational grids. Journal of Grid Computing 9(3), 303–323 (2011)CrossRefGoogle Scholar
  31. 31.
    Loke, S.W., Napier, K., Alali, A., Fernando, N., Rahayu, W.: Mobile computations with surrounding devices: Proximity sensing and multilayered work stealing. ACM Trans. Embed. Comput. Syst. 14(2), 22:1–22:25 (2015)CrossRefGoogle Scholar
  32. 32.
    Li, B., Pei, Y., Wu, H., Shen, B.: Heuristics to allocate high-performance cloudlets for computation offloading in mobile ad hoc clouds. J. Supercomput., 1–28 (2015)Google Scholar
  33. 33.
    Shi, T., Yang, M., Jiang, Y., Li, X., Lei, Q.: An Adaptive Probabilistic Scheduler for Offloading Time-Constrained Tasks in Local Mobile Clouds. In: Ubiquitous and Future Networks (ICUFN), vol. 2014 Sixth International Conf on, pp. 243–248. IEEE (2014)Google Scholar
  34. 34.
    Castro, M.C., Kassler, A.J., Chiasserini, C.-F., Casetti, C., Korpeoglu, I.: Peer-to-peer overlay in mobile ad-hoc networks, pp. 1045–1080. Springer (2010)Google Scholar
  35. 35.
    Macone, D., Oddi, G., Pietrabissa, A.: Mq-routing: Mobility-, gps- and energy-aware routing protocol in MANETs for disaster relief scenarios. Ad Hoc Networks 11(3), 861–878 (2013)CrossRefGoogle Scholar
  36. 36.
    Torres, R., Mengual, L., Marban, O., Eibe, S., Menasalvas, E., Maza, B.: A management ad hoc networks model for rescue and emergency scenarios. Expert Syst. Appl. 39(10), 9554–9563 (2012)CrossRefGoogle Scholar
  37. 37.
    van Nieuwpoort, R., Wrzesinska, G., Jacobs, C.J.H., Bal, H.E.: Satin: A high-level and efficient grid programming model. ACM Trans. Program. Lang. Syst. 32(3)Google Scholar
  38. 38.
    Xu, H., Yang, B.: An incentive-based heuristic job scheduling algorithm for utility grids. Futur. Gener. Comput. Syst. 49(0), 1–7 (2015)CrossRefGoogle Scholar
  39. 39.
    Hu, Y., Yurkovich, S.: Battery cell state-of-charge estimation using linear parameter varying system techniques. J. Power. Sources 198(0), 338–350 (2012)CrossRefGoogle Scholar
  40. 40.
    Mednieks, Z., Dornin, L., Meike, G.B., Nakamura, M.: Programming Android, 2nd Edn. Java Programming for the New Generation of Mobile Devices, O’Reilly Media (2012)Google Scholar
  41. 41.
    Shen, W.X., Chan, C.C., Lo, E.W.C., Chau, K.T.: Estimation of battery available capacity under variable discharge currents. J. Power Sources 103(2), 180–187 (2002)CrossRefGoogle Scholar
  42. 42.
    Khalaj, A., Lutfiyya, H., Perry, M.: The Proxy-Based Mobile Grid. In: Cai, Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) Mobile Wireless Middleware, Operating Systems, and Applications, Vol. 48 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 59–69. Springer, Berlin (2010)Google Scholar
  43. 43.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., de Rose, C.A.F., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience 41(1), 23–50 (2011)Google Scholar
  44. 44.
    Rice, A., Hay, S.: Measuring Mobile Phone Energy Consumption for 802.11 Wireless Networking. Pervasive and Mobile Computing 6(6), 593–606 (2010)CrossRefGoogle Scholar
  45. 45.
    Takeno, K., Ichimura, M., Takano, K., Yamaki, J.: Influence of cycle capacity deterioration and storage capacity deterioration on li-ion batteries used in mobile phones. J. Power. Sources 142(1-2), 298–305 (2005)CrossRefGoogle Scholar
  46. 46.
    Pacini, E., Mateos, C., García Garino, C.: Distributed job scheduling based on swarm intelligence: A survey. Comput. Electr. Eng. 40(1), 252–269 (2014). 40th-year commemorative issueCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Matías Hirsch
    • 1
  • Juan Manuel Rodríguez
    • 1
  • Cristian Mateos
    • 1
  • Alejandro Zunino
    • 1
  1. 1.ISISTAN-CONICET. UNICEN UniversityCampus UniversitarioTandilArgentina

Personalised recommendations