Journal of Grid Computing

, Volume 15, Issue 1, pp 1–22 | Cite as

Redundant Eucalyptus Private Clouds: Availability Modeling and Sensitivity Analysis

  • Rubens Matos
  • Jamilson Dantas
  • Jean Araujo
  • Kishor S. Trivedi
  • Paulo Maciel


Cloud computing infrastructures are designed to be accessible anywhere and anytime. This requires various fault tolerance mechanisms for coping with software and hardware failures. Hierarchical modeling approaches are often used to evaluate the availability of such systems, leveraging the representation of complex failure and repair events in distinct parts of the system. This paper presents an availability evaluation for redundant private clouds, represented by RBDs and Markov chains, hierarchically assembled. These private clouds follow the basic architecture of Eucalyptus-based environments, but employing warm-standby redundant hosts for some of its main components. Closed-form equations for the steady-state availability are presented, allowing direct analytical solution for large systems. The availability equations are symbolically differentiated, allowing parametric sensitivity analysis. The results from sensitivity analysis enables system planning for improving the steady- state availability. The sensitivity indices show that failure of the Eucalyptus Cloud Manager subsystem and the respective repair activities deserve priority for maximizing the system availability.


Cloud computing Availability modeling Reliability block diagrams Continuous time Markov chains Sensitivity analysis Hierarchical models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010). doi: 10.1145/1721654.1721672 CrossRefGoogle Scholar
  2. 2.
    Sun, D., Chang, G., Guo, Q., Wang, C., Wang, X.: A dependability model to enhance security of cloud environment using system level virtualization techniques. In: Proceedings First Int. Conf. on Pervasive Computing, Signal Processing and Applications (PCSPA 2010). Harbin (2010)Google Scholar
  3. 3.
    Chen, I.R., Bastani, F.: Warm standby in hierarchically structured process-control programs. IEEE Trans. Softw. Eng. 20(8), 658–663 (1994). doi: 10.1109/32.310674 CrossRefGoogle Scholar
  4. 4.
    Maciel, P., Trivedi, K.S., Matias, R., Kim, D.S.: Dependability modeling. In: Performance and Dependability in Service Computing: Concepts, Techniques and Research Directions. IGI Global, Hershey (2011)Google Scholar
  5. 5.
    Adler, B.: Designing Private and Hybrid Clouds: Architectural Best Practices. RightScale, Inc. (2012)
  6. 6.
    Ramalho Dantas, J., Matos, R., Araujo, J., Maciel, P.: An availability model for eucalyptus platform: An analysis of warm-standy replication mechanism. In: The 2012 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2012). Seoul, Korea (2012)Google Scholar
  7. 7.
    Ghosh, R., Longo, F., Frattini, F., Russo, S., Trivedi, K.S.: Scalable analytics for iaas cloud availability. IEEE T. Cloud Computing 2(1), 57–70 (2014). doi: 10.1109/TCC.2014.2310737 CrossRefGoogle Scholar
  8. 8.
    Longo, F., Ghosh, R., Naik, V., Trivedi, K.: A scalable availability model for infrastructure-as-a-service cloud. In: 2011 IEEE/IFIP 41st International Conference on Dependable Systems Networks (DSN). doi: 10.1109/DSN.2011.5958247, pp 335–346 (2011)
  9. 9.
    Wei, B., Lin, C., Kong, X.: Dependability modeling and analysis for the virtual data center of cloud computing. In: Proceedings of the 2011 IEEE International Conference on High Performance Computing and Communications, HPCC ’11, pp. 784–789. IEEE Computer Society, Washington, DC, USA. doi: 10.1109/HPCC.2011.111 (2011)
  10. 10.
    Chuob, S., Pokharel, M., Park, J.S.: Modeling and analysis of cloud computing availability based on eucalyptus platform for e-government data center. In: 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). doi: 10.1109/IMIS.2011.135, pp 289–296 (2011)
  11. 11.
    Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput. 1(1), 11–33 (2004)CrossRefGoogle Scholar
  12. 12.
    Laprie, J.C.C., Avizienis, A., Kopetz, H., (eds.): Dependability: Basic Concepts and Terminology. Springer-Verlag New York, Inc., Secaucus, NJ USA (1992)Google Scholar
  13. 13.
    O’Connor, P.P., Kleyner, A.: Practical Reliability Engineering, 5th edn. Wiley Publishing (2012)Google Scholar
  14. 14.
    Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. Comput. 31(9), 913–917 (1982). doi: 10.1109/TC.1982.1676110 CrossRefGoogle Scholar
  15. 15.
    Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queuing Networks and Markov Chains: modeling and performance evaluation with computer science applications, 2edn. John Wiley and Sons (2001)Google Scholar
  16. 16.
    Cloth, L., Katoen, J.P., Khattri, M., Pulungan, R.: Model checking markov reward models with impulse rewards. In: Proceedings of the 2005 International Conference on Dependable Systems and Networks, DSN ’05, pp. 722–731. IEEE Computer Society, Washington, DC, USA. doi: 10.1109/DSN.2005.64 (2005)
  17. 17.
    Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer Science Applications, 2edn. John Wiley and Sons (2001)Google Scholar
  18. 18.
    Trivedi, K.S., Sahner, R.: Sharpe at the age of twenty two. SIGMETRICS Perform. Eval. Rev. 36(4), 52–57 (2009). doi: 10.1145/1530873.1530884 CrossRefGoogle Scholar
  19. 19.
    Frank, P.M.: Introduction to System Sensitivity Theory Academic Press Inc (1978)Google Scholar
  20. 20.
    Hamby, D.M.: A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess., 135–154 (1994)Google Scholar
  21. 21.
    Blake, J.T., Reibman, A.L., Trivedi, K.S.: Sensitivity analysis of reliability and performability measures for multiprocessor systems. In: Proceedings of the 1988 ACM SIGMETRICS conference on Measurement and modeling of computer systems, pp. 177–186. ACM, New York, NY, USA. doi: 10.1145/55595.55616 (1988)
  22. 22.
    Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modeling. Wiley-Interscience, New York (1991)zbMATHGoogle Scholar
  23. 23.
    Ross, S.: Introductory Statistics Elsevier Science (2010)Google Scholar
  24. 24.
    Whitt, W.: Sensitivity of performance in the erlang-a queueing model to changes in the model parameters. Oper. Res. 54(2), 247–260 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tay, Y.: An approach to analyzing the behavior of some queueing networks. Oper. Res. 40 (3-supplement-2), S300–S311 (1992)CrossRefzbMATHGoogle Scholar
  26. 26.
    Ou, Y., Dugan, J.B.: Approximate sensitivity analysis for acyclic markov reliability models. IEEE Trans. Reliab. 52(2), 220–230 (2003)CrossRefGoogle Scholar
  27. 27.
    Matos, R.D.S., Maciel, P.R.M., Machida, F., Kim, D.S., Trivedi, K.S.: Sensitivity analysis of server virtualized system availability. IEEE Trans. Reliab. 61(4), 994–1006 (2012). doi: 10.1109/TR.2012.2220711 CrossRefGoogle Scholar
  28. 28.
    Abdallah, H., Hamza, M.: On the sensitivity analysis of the expected accumulated reward. Perform. Eval. 47(2), 163–179 (2002). doi: 10.1016/S0166-5316(01)00063-3 CrossRefzbMATHGoogle Scholar
  29. 29.
    Muppala, J.K., Trivedi, K.S.: GSPN models: sensitivity analysis and applications. In: ACM-SE 28: Proceedings of the 28th annual Southeast regional conference, pp. 25–33. ACM, New York, NY, USA. doi: 10.1145/98949.98962 (1990)
  30. 30.
    Yin, B., Dai, G., Li, Y., Xi, H.: Sensitivity analysis and estimates of the performance for m/g/1 queueing systems. Perform. Eval. 64(4), 347–356 (2007). doi: 10.1016/j.peva.2006.06.004 CrossRefGoogle Scholar
  31. 31.
    Mell, P., Grance, T.: NIST Special Publication 800-145 (2011)
  32. 32.
    SunMicrosystems: Introduction to Cloud Computing Architecture, 1 edn, Sun Microsystems, Inc (2009)Google Scholar
  33. 33.
    Furht, B., Escalante, A.: Handbook of Cloud Computing Springer (2010)Google Scholar
  34. 34.
    Eucalyptus: Cloud Computing and Open Source: IT Climatology is Born. Eucalyptus Systems, Goleta CA (2010)Google Scholar
  35. 35.
    Eucalyptus: Eucalyptus - the open source cloud platform. Eucalyptus Systems: Available in: (2012)
  36. 36.
    Amazon: Amazon Elastic Block Store (EBS)., Inc.: Available in: (2012)
  37. 37.
    Eucalyptus: Eucalyptus Open-Source Cloud Computing Infrastructure - An Overview. Eucalyptus Systems, Goleta CA (2009)Google Scholar
  38. 38.
    Amazon: Amazon Elastic Compute Cloud (EC2)., Inc.: Available in: (2012)
  39. 39.
    D, J., Murari, K., Raju, M., RB, S., Girikumar, Y.: Eucalyptus Beginner’s Guide uec edn (2010)Google Scholar
  40. 40.
    Rimal, B., Jukan, A., Katsaros, D., Goeleven, Y.: Architectural requirements for cloud computing systems: An enterprise cloud approach. Journal of Grid Computing 9(1), 3–26 (2011). doi: 10.1007/s10723-010-9171-y CrossRefGoogle Scholar
  41. 41.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, Y., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud computing (2009)Google Scholar
  42. 42.
    Yeow, W.L., Westphal, C., Kozat, U.: A resilient architecture for automated fault tolerance in virtualized data centers. In: IEEE Network Operations and Management Symposium (NOMS). doi: 10.1109/NOMS.2010.5488356, pp 866–869 (2010)
  43. 43.
    Cuomo, A., Di Modica, G., Distefano, S., Puliafito, A., Rak, M., Tomarchio, O., Venticinque, S., Villano, U.: An sla-based broker for cloud infrastructures. Journal of Grid Computing 11(1), 1–25 (2013). doi: 10.1007/s10723-012-9241-4 CrossRefGoogle Scholar
  44. 44.
    Méndez Muñoz, V., Casajús Ramo, A., Fernández Albor, V., Graciani Diaz, R., Merino Arévalo, G.: Rafhyc: an architecture for constructing resilient services on federated hybrid clouds. Journal of Grid Computing 11(4), 753–770 (2013). doi: 10.1007/s10723-013-9279-y CrossRefGoogle Scholar
  45. 45.
    Brilhante, J., Silva, B., Maciel, P., Zimmermann, A.: Eucabomber 2.0: A tool for dependability tests in eucalyptus cloud infrastructures considering vm life-cycle. In: Systems, Man and Cybernetics (SMC), International Conference on 2014 IEEE. doi: 10.1109/SMC.2014.6974330, pp 2669–2674 (2014)
  46. 46.
    Souza, D., Matos, R., Araujo, J., Alves, V., Maciel, P.: Eucabomber: Experimental evaluation of availability in eucalyptus private clouds. In: Systems, Man, and Cybernetics (SMC), International Conference on 2013 IEEE. doi: 10.1109/SMC.2013.696, pp 4080–4085 (2013)
  47. 47.
    GiNAC: GiNaC is Not a CAS: Available in: (2015)
  48. 48.
    Symja: Symja: Java Computer Algebra Library: Available in: (2015)
  49. 49.
    Silva, B., Matos, R., Callou, G., Figueiredo, J., Oliveira, D., Ferreir, J., Dantas, J., Lobo Junior, A., Alves, V., Maciel, P.: Mercury: An integrated environment for performance and dependability evaluation of general systems. In: Proceedings of Industrial Track at 45th Dependable Systems and Networks Conference, DSN 2015. IEEE, Rio de Janeiro (2015)Google Scholar
  50. 50.
    Mercury: Mercury tool. MoDCS Research Group: Available in: (2015)
  51. 51.
    Von Laszewski, G., Diaz, J., Wang, F., Fox, G.C.: Comparison of multiple cloud frameworks. In: Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, pp. 734–741. IEEE (2012)Google Scholar
  52. 52.
    Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W., Li, Q.: Comparison of several cloud computing platforms. In: Information Science and Engineering (ISISE), 2009 Second International Symposium on, pp. 23–27. IEEE (2009)Google Scholar
  53. 53.
    Sempolinski, P., Thain, D.: A comparison and critique of eucalyptus, opennebula and nimbus. In: Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on, pp. 417–426. Ieee (2010)Google Scholar
  54. 54.
    Eucalyptus: Eucalyptus cloud computing platform - administrator guide. Tech. rep., Eucalyptus Systems: Version 1.6 (2010)Google Scholar
  55. 55.
    Heartbeat: Linux-HA project: Available: (2012)
  56. 56.
    DRBD: Distributed replicated block device.: Available: (2012)
  57. 57.
    Reisner, P.: Drbd - distributed replicated block device. In: Proceedings of the 9th Int. Linux System Technology Conference. Cologne (2002)Google Scholar
  58. 58.
    Eucalyptus: Eucalyptus - high availability support. Eucalyptus Systems: Available in: (2015)
  59. 59.
    Eucalyptus: Eucalyptus migration to high availability. Eucalyptus Systems: Available in: (2015)
  60. 60.
    Sahner, R.A., Trivedi, K.S., Puliafito, A.: Performance and reliability analysis of computer systems: an example-based approach using the SHARPE software package. Kluwer Academic Publishers, Norwell, MA USA (1996)Google Scholar
  61. 61.
    Kim, D.S., Machida, F., Trivedi, K.: Availability modeling and analysis of a virtualized system. In: 15th IEEE Pacific Rim Int. Symp. on Dependable Computing. PRDC ’09. doi: 10.1109/PRDC.2009.64, pp 365–371 (2009)
  62. 62.
    Hu, T., Guo, M., Guo, S., Ozaki, H., Zheng, L., Ota, K., Dong, M.: Mttf of composite web services. In: 2010 Int. Symp. on Parallel and Distributed Processing with Applications (ISPA). doi: 10.1109/ISPA.2010.91, pp 130–137 (2010)
  63. 63.
    Wang, D., Trivedi, K.: Computing steady-state mean time to failure for non-coherent repairable systems. IEEE Trans. Reliab. 54(3), 506–516 (2005). doi: 10.1109/TR.2005.853040  10.1109/TR.2005.853040 CrossRefGoogle Scholar
  64. 64.
    Marwah, M., Maciel, P., Shah, A., Sharma, R., Christian, T., Almeida, V., Araújo, C., Souza, E., Callou, G., Silva, B., Galdino, S., Pires, J.: Quantifying the sustainability impact of data center availability. Sigmetrics Perform. Eval. Rev. 37, 64–68 (2010)CrossRefGoogle Scholar
  65. 65.
    Watson, J.F.I., Desrochers, A.: Applying generalized stochastic petri nets to manufacturing systems containing nonexponential transition functions. IEEE Trans. Syst. Man Cybern. 21(5), 1008–1017 (1991). doi: 10.1109/21.120053 CrossRefGoogle Scholar
  66. 66.
    Kline, M.B.: Suitability of the lognormal distribution for corrective maintenance repair times. Reliab. Eng. 9(2), 65–80 (1984). doi: 10.1016/0143-8174(84)90041-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rubens Matos
    • 1
    • 3
  • Jamilson Dantas
    • 1
  • Jean Araujo
    • 1
    • 4
  • Kishor S. Trivedi
    • 2
  • Paulo Maciel
    • 1
  1. 1.Informatics CenterFederal University of PernambucoRecifeBrazil
  2. 2.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA
  3. 3.Federal Institute of EducationScience, and Technology of SergipeLagartoBrazil
  4. 4.Federal Rural University of PernambucoGaranhunsBrazil

Personalised recommendations