Journal of Grid Computing

, Volume 14, Issue 4, pp 499–514 | Cite as

Advancing a Gateway Infrastructure for Wind Turbine Data Analysis

  • Alvaro Aguilera
  • Richard Grunzke
  • Dirk Habich
  • Johannes Luong
  • Dirk Schollbach
  • Ulf Markwardt
  • Jochen Garcke
Article

Abstract

The increasing amount of data produced in many scientific and engineering domains creates as many new challenges for an efficient data analysis, as possibilities for its application. In this paper, we present one of the use cases of the project VAVID, namely the condition monitoring of sensor information from wind turbines, and how a data gateway can help to increase the usability and security of the proposed system. Starting by briefly introducing the project, the paper presents the problem of handling and processing large amount of sensor data using existing tools in the context of wind turbines. It goes on to describe the innovative approach used in VAVID to meet this challenge, covering the main goals, numerical methods used for analysis, the storage concept, and the architectural design. It concludes by offering a rational for the use of a data gateway as the main entry point to the system and how this is being implemented in VAVID.

Keywords

HPC Big data VAVID Wind turbine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilera, A., Grunzke, R., Markwardt, U., Habich, D., Schollbach, D., Garcke, J.: Towards an industry data gateway: An integrated platform for the analysis of wind turbine data. In: 7th International Workshop on Science Gateways, pp 62–66 (2015)Google Scholar
  2. 2.
    Balaskó, Á.: Workflow concept of WS-PGRADE/gUSE. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 33–50. Springer (2014)Google Scholar
  3. 3.
    Becciani, U., Sciacca, E., Costa, A., Massimino, P., Pistagna, C., Riggi, S., Vitello, F., Petta, C., Bandieramonte, M., Krokos, M.: Science gateway technologies for the astrophysics community. Concurrency and Computation: Practice and Experience 27(2), 306–327 (2015)CrossRefGoogle Scholar
  4. 4.
    Benedyczak, K., Schuller, B., Petrova, M., Rybicki, J., Grunzke, R.: UNICORE 7 - middleware services for distributed and federated computing. In: International Conference on High Performance Computing Simulation (HPCS)(2016, accepted)Google Scholar
  5. 5.
    Boehm, M., Schlegel, B., Volk, P.B., Fischer, U., Habich, D., Lehner, W.: Efficient in-memory indexing with generalized prefix trees. In: BTW, vol. 180, pp. 227–246 (2011)Google Scholar
  6. 6.
    Center for Information Services and High Performance Computing of the TU Dresden: HPC cluster Taurus (2015). https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
  7. 7.
    Costa, A., Massimino, P., Bandieramonte, M., Becciani, U., Krokos, M., Pistagna, C., Riggi, S., Sciacca, E., Vitello, F.: An innovative science gateway for the Cherenkov telescope array. J. Grid Comput., 1–13 (2015)Google Scholar
  8. 8.
    Davidson, S.B., Cohen-Boulakia, S., Eyal, A., Ludäscher, B., McPhillips, T.M., Bowers, S., Anand, M.K., Freire, J.: Provenance in scientific workflow systems. IEEE Data Eng. Bull. 30 (4), 44–50 (2007)Google Scholar
  9. 9.
    Davidson, S.B., Freire, J.: Provenance and scientific workflows: Challenges and opportunities. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pp. 1345–1350. ACM, New York, NY, USA. doi:10.1145/1376616.1376772 (2008)
  10. 10.
    Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An overview of workflow system features and capabilities (2008)Google Scholar
  11. 11.
    Folk, M., Cheng, A., Yates, K.: HDF5: A file format and I/O library for high performance computing applications. In: Proceedings of Supercomputing, vol. 99 (1999)Google Scholar
  12. 12.
    Garcke, J., Iza-Teran, R., Marks, M., Pathare, M., Schollbach, D., Stettner, M.: Data analysis for time series data from wind turbines. In: Industrial Mathematics at Fraunhofer SCAI. Preprint. Springer (2016)Google Scholar
  13. 13.
    Garcke, J., Vanck, T.: Importance weighted inductive transfer learning for regression. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECMLPKDD 2014, Nancy, Lecture Notes in Computer Science, vol. 8724, pp. 466–481. Springer (2014). doi:10.1007/978-3-662-44848-9_30
  14. 14.
    Gasch, R., Twele, J.: Wind Power Plants. Springer Berlin Heidelberg. Heidelberg, Berlin (2012). doi:10.1007/978-3-642-22938-1
  15. 15.
    Gesing, S., Grunzke, R., Krüger, J., Birkenheuer, G., Wewior, M., Schäfer, P., Schuller, B., Schuster, J., Herres-Pawlis, S., Breuers, S., Balaskó, Á., Kozlovszky, M., Fabri, A.S., Packschies, L., Kacsuk, P., Blunk, D., Steinke, T., Brinkmann, A., Fels, G., Müller-Pfefferkorn, R., Jäkel, R., Kohlbacher, O.: A single sign-on infrastructure for science gateways on a use case for structural bioinformatics 10(4), 769–790 (2012). doi:10.1007/s10723-012-9247-y
  16. 16.
    Gesing, S., Krüger, J., Grunzke, R., de la Garza, L., Herres-Pawlis, S., Hoffmann, A.: Molecular simulation grid (MoSGrid): A science gateway tailored to the molecular simulation community. In: Science Gateways for Distributed Computing Infrastructures, pp. 151–165. Springer International Publishing (2014). doi:10.1007/978-3-319-11268-8_11
  17. 17.
    Gottdank, T.: Introduction to the WS-PGRADE/gUSE science gateway framework. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 19–32. Springer (2014)Google Scholar
  18. 18.
    Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W.E., Atkinson, M., Krüger, J.: Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience 26(10), 1744–1759 (2014). doi:10.1002/cpe.3116 CrossRefGoogle Scholar
  19. 19.
    Habich, D., Schad, J., Kissinger, T., Lehner, W.: Towards programmability of a NUMA-aware storage engine (2015)Google Scholar
  20. 20.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Second Edition. Springer (2001)Google Scholar
  21. 21.
    HBP: The human brain project (2015). https://www.humanbrainproject.eu
  22. 22.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454(1971), 903–995 (1998). doi:10.1098/rspa.1998.0193
  23. 23.
    Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 23(1), 67–72 (1975). doi:10.1109/TASSP.1975.1162641 CrossRefGoogle Scholar
  24. 24.
    Kacsuk, P.: Science Gateways for Distributed Computing Infrastructures. Springer (2014)Google Scholar
  25. 25.
    Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A., Karoczkai, K., Marton, I.: WS-PGRADE/gUSE generic DCI gateway framework for a large variety of user communities. J. Grid Comput. 10(4), 601–630 (2012). doi:10.1007/s10723-012-9240-5 CrossRefGoogle Scholar
  26. 26.
    Kammeyer, K.D., Kroschel, K.: Digitale Signalverarbeitung. Springer Vieweg (2012)Google Scholar
  27. 27.
    Kissinger, T., Kiefer, T., Schlegel, B., Habich, D., Molka, D., Lehner, W.: ERIS: A NUMA-aware in-memory storage engine for analytical workloads. Proceedings of the VLDB Endowment 7(14) (2014)Google Scholar
  28. 28.
    Kissinger, T., Schlegel, B., Habich, D., Lehner, W.: KISS-Tree: Smart latch-free in-memory indexing on modern architectures. In: Proceedings of the Eighth International Workshop on Data Management on New Hardware, pp. 16–23. ACM (2012)Google Scholar
  29. 29.
    Kozlovszky, M., Karóczkai, K., Márton, I., Kacsuk, P., Gottdank, T.: DCI bridge: Executing WS-PGRADE workflows in distributed computing infrastructures. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 51–67. Springer (2014)Google Scholar
  30. 30.
    Krüger, J., Grunzke, R., Gesing, S., Breuers, S., Brinkmann, A., de la Garza, L., Kohlbacher, O., Kruse, M., Nagel, W.E., Packschies, L., Müller-Pfefferkorn, R., Schäfer, P., Schärfe, C., Steinke, T., Schlemmer, T., Warzecha, K.D., Zink, A., Herres-Pawlis, S.: The MoSGrid science gateway – a complete solution for molecular simulations. J. Chem. Theory Comput. 10(6), 2232–2245 (2014). doi:10.1021/ct500159h CrossRefGoogle Scholar
  31. 31.
    Kusiak, A., Zhang, Z., Verma, A.: Prediction, operations, and condition monitoring in wind energy. Energy 60, 1–12 (2013). doi:10.1016/j.energy.2013.07.051 CrossRefGoogle Scholar
  32. 32.
    Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction. Springer (2007)Google Scholar
  33. 33.
    Liferay: Enterprise open source portal and collaboration software (2015). http://www.liferay.com/
  34. 34.
    Luong, J., Habich, D., Kissinger, T., Lehner, W.: Architecture of a multi-domain processing and storage engine (2016)Google Scholar
  35. 35.
    Lustre: The Lustre parallel file system (2015). http://lustre.org
  36. 36.
    Noor, W., Schuller, B.: MMF: A flexible framework for metadata management in UNICORE. In: UNICORE Summit 2010 Proceedings, vol. 5, pp. 51–60 (2010)Google Scholar
  37. 37.
    PRACE: PRACE research infrastructure (2015). http://www.prace-ri.eu
  38. 38.
    Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs. In: Acm Sigplan Notices, vol. 46, pp. 127–136. ACM (2010)Google Scholar
  39. 39.
    Schmuck, F.B., Haskin, R.L.: GPFS: A shared-disk file system for large computing clusters. In: FAST, vol. 2, p. 19 (2002)Google Scholar
  40. 40.
    Schuller, B., Grunzke, R., Giesler, A.: Data oriented processing in UNICORE. In: UNICORE Summit 2013 Proceedings, IAS Series, vol. 21, pp. 1–6 (2013)Google Scholar
  41. 41.
    Shahand, S., Benabdelkader, A., Jaghoori, M.M., Mourabit, M.A., Huguet, J., Caan, M.W., Kampen, A.H., Olabarriaga, S.D.: A data-centric neuroscience gateway: design, implementation, and experiences. Concurrency and Computation: Practice and Experience 27(2), 489–506 (2015)CrossRefGoogle Scholar
  42. 42.
    Shahand, S., Santcroos, M., van Kampen, A.H., Olabarriaga, S.D.: A grid-enabled gateway for biomedical data analysis. J. Grid Comput. 10(4), 725–742 (2012)CrossRefGoogle Scholar
  43. 43.
    Unity: Unity - Cloud identity and federation management (2014). http://unity-idm.eu
  44. 44.
    Vanck, T., Garcke, J.: Using hyperbolic cross approximation to measure and compensate covariate shift. In: Ong, C.S., Ho, T.B. (eds.) ACML 2013, Canberra, pp. 435–450 (2013)Google Scholar
  45. 45.
    Wu, J., Siewert, R., Hoheisel, A., Falkner, J., Strauß, O., Berberovic, D., Krefting, D.: The Charité grid portal: User-friendly and secure access to grid-based resources and services. J. Grid Comput. 10(4), 709–724 (2012)CrossRefGoogle Scholar
  46. 46.
    XSEDE: Extreme science and engineering discovery environment. https://www.xsede.org (2015)
  47. 47.
    Ye, L., Keogh, E.: Time series shapelets. In: KDD 2009, pp. 947–956. ACM Press. doi:10.1145/1557019.1557122 (2009)

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Center for Information Services and High Performance, Computing (ZIH)Technische Universität DresdenDresdenGermany
  2. 2.Database Systems GroupTechnische Universität DresdenDresdenGermany
  3. 3.Bosch Rexroth Monitoring Systems GmbHDresdenGermany
  4. 4.Fraunhofer SCAI, Schloss Birlinghoven, 53754 Sankt AugustinGermany and Institut für Numerische Simulation Universität BonnBonnGermany

Personalised recommendations