Advertisement

Journal of Grid Computing

, Volume 14, Issue 1, pp 5–22 | Cite as

Online Bi-Objective Scheduling for IaaS Clouds Ensuring Quality of Service

  • Andrei Tchernykh
  • Luz Lozano
  • Uwe Schwiegelshohn
  • Pascal Bouvry
  • Johnatan E. Pecero
  • Sergio Nesmachnow
  • Alexander Yu. Drozdov
Article

Abstract

This paper focuses on a bi-objective experimental evaluation of online scheduling in the Infrastructure as a Service model of Cloud computing regarding income and power consumption objectives. In this model, customers have the choice between different service levels. Each service level is associated with a price per unit of job execution time, and a slack factor that determines the maximal time span to deliver the requested amount of computing resources. The system, via the scheduling algorithms, is responsible to guarantee the corresponding quality of service for all accepted jobs. Since we do not consider any optimistic scheduling approach, a job cannot be accepted if its service guarantee will not be observed assuming that all accepted jobs receive the requested resources. In this article, we analyze several scheduling algorithms with different cloud configurations and workloads, considering the maximization of the provider income and minimization of the total power consumption of a schedule. We distinguish algorithms depending on the type and amount of information they require: knowledge free, energy-aware, and speed-aware. First, to provide effective guidance in choosing a good strategy, we present a joint analysis of two conflicting goals based on the degradation in performance. The study addresses the behavior of each strategy under each metric. We assess the performance of different scheduling algorithms by determining a set of non-dominated solutions that approximate the Pareto optimal set. We use a set coverage metric to compare the scheduling algorithms in terms of Pareto dominance. We claim that a rather simple scheduling approach can provide the best energy and income trade-offs. This scheduling algorithm performs well in different scenarios with a variety of workloads and cloud configurations.

Keywords

Cloud computing Service level agreement Energy efficiency Multi-objective scheduling IaaS Provider income 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, I., Ranka, S.: Handbook of energy-aware and green computing. Chapman & Hall/CRC (2012)Google Scholar
  2. 2.
    Zomaya, Y., Lee, Y.: Energy efficient distributed computing systems. Wiley-IEEE Computer Society Press (2012)Google Scholar
  3. 3.
    Lezama, A., Tchernykh, A., Yahyapour, R.: Performance evaluation of infrastructure as a service clouds with SLA constraints. Computación y Sistemas 17(3), 401–411 (2013)Google Scholar
  4. 4.
    Schwiegelshohn, U., Tchernykh, A.: Online scheduling for cloud computing and different service levels, pp 1067–1074. 26th Int. Parallel and Distributed Processing Symposium, Los Alamitos (2012)Google Scholar
  5. 5.
    Tchernykh, A., Pecero, J., Barrondo, A., Schaeffer, E.: Adaptive Energy Efficient Scheduling in Peer-to-Peer Desktop Grids. Futur. Gener. Comput. Syst. 36, 209–220 (2014)CrossRefGoogle Scholar
  6. 6.
    Raycroft, P., Jansen, R., Jarus, M., Brenner, P.: Performance bounded energy efficient virtual machine allocation in the global cloud. Sustainable Computing: Informatics and Systems 4(1), 1–9 (2014)Google Scholar
  7. 7.
    Khan, S., Ahmad, I.: A cooperative game theoretical technique for joint optimization of power consumption and response time in computational grids. Trans. Parallel Distrib. Syst. 20(3), 346–360 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22(8), 1374–1381 (2011)CrossRefGoogle Scholar
  9. 9.
    Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Talbi, E., Zomaya, A., Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 71(11), 1497–1508 (2011)CrossRefGoogle Scholar
  10. 10.
    Pecero, J., Bouvry, P., Fraire, H., Khan, S.: A multi-objective GRASP algorithm for joint optimization of power consumption and schedule length of precedence-constrained applications. International Conference on Cloud and Green Computing, 1–8 (2011)Google Scholar
  11. 11.
    Lindberg, P., Leingang, J., Lysaker, D., Khan, S., Li, J.: Comparison and analysis of eight scheduling heuristics for the optimization of power consumption and makespan in large-scale distributed systems. J. Supercomput. 59(1), 323–360 (2012)CrossRefGoogle Scholar
  12. 12.
    Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–680 (2013)CrossRefGoogle Scholar
  13. 13.
    Iturriaga, S., Nesmachnow, S., Dorronsoro, B., Bouvry, P.: Energy efficient scheduling in heterogeneous systems with a parallel multiobjective local search. Comput. Inf. 32(2), 273–294 (2013)MathSciNetGoogle Scholar
  14. 14.
    DasGupta, B., Palis, M.: Online real-time preemptive scheduling of jobs with deadlines on multiple machines. Scheduling 4(6), 297–312 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Parallel Workload Archive [Online, November 2014]. Available at http://www.cs.huji.ac.il/labs/parallel/workload
  16. 16.
    Grid Workloads Archive [Online, November 2014]. Available at http://gwa.ewi.tudelft.nl
  17. 17.
    Ramírez, J.M., Tchernykh, A., Yahyapour, R., Schwiegelshohn, U., Quezada, A., González, J., Hirales, A.: Job allocation strategies with user run time estimates for online scheduling in hierarchical grids. J. Grid Comput. 9, 95–116 (2011)CrossRefGoogle Scholar
  18. 18.
    Quezada, A., Tchernykh, A., González, J., Hirales, A., Ramírez, J.-M., Schwiegelshohn, U., Yahyapour, R., Miranda, V.: Adaptive parallel job scheduling with resource admissible allocation on two-level hierarchical grids. Futur. Gener. Comput. Syst. 28(7), 965–976 (2012)CrossRefGoogle Scholar
  19. 19.
    Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J. E., Nesmachnow, S.: Energy-aware online scheduling: ensuring quality of service for IaaS clouds, pp 911–918. International Conference on High Performance Computing & Simulation (HPCS 2014), Bologna (2014)Google Scholar
  20. 20.
    Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications, PhD thesis. Swiss Federal Institute of Technology, Zurich (1999)Google Scholar
  21. 21.
    Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J.E., Nesmachnow, S.: Bi-objective online scheduling with quality of service for IaaS clouds. In: 3rd IEEE international conference on cloud networking, Luxembourg (2014)Google Scholar
  22. 22.
    Tchernykh, A., Schwiegelsohn, U., Yahyapour, R., Kuzjurin, N.: Online hierarchical job scheduling on grids with admissible allocation. J. Sched. 13(5), 545–552 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tchernykh, A., Ramírez, J., Avetisyan, A., Kuzjurin, N., Grushin, D., Zhuk, S.: Two level job-scheduling strategies for a computational grid. In: Wyrzykowski, R. et al. (eds.) Parallel processing and applied mathematics, 6th International conference on parallel processing and applied mathematics, LNCS 3911, pp 774–781. Springer, Poznan (2006)Google Scholar
  24. 24.
    Tsafrir, D., Etsion, Y., Feitelson, D.: Backfilling using system-generated predictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst. 18(6), 789–803 (2007)CrossRefGoogle Scholar
  25. 25.
    Nesmachnow, S., Perfumo, C., Goiri, I.: Controlling datacenter power consumption while maintaining temperature and QoS levels. In: 3rd IEEE international conference on cloud networking. Luxembourg (2014)Google Scholar
  26. 26.
    Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A., Talbi, E-G., Bouvry, P.: A hierarchical approach for energy-efficient scheduling of large workloads in multicore distributed systems. Sustainable Computing: Informatics Systems 4, 252–261 (2014)Google Scholar
  27. 27.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, New York (2001)zbMATHGoogle Scholar
  28. 28.
    Hirales, A., Tchernykh, A., Roblitz, T., Yahyapour, R.: A Grid simulation framework to study advance scheduling strategies for complex workflow applications. Parallel Distributed Processing. 2010 IEEE International Symposium on Workshops and Phd Forum (IPDPSW), pp 1–8 (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Andrei Tchernykh
    • 1
  • Luz Lozano
    • 1
  • Uwe Schwiegelshohn
    • 2
  • Pascal Bouvry
    • 3
  • Johnatan E. Pecero
    • 3
  • Sergio Nesmachnow
    • 4
  • Alexander Yu. Drozdov
    • 5
  1. 1.CICESE Research CenterEnsenadaMéxico
  2. 2.TU Dortmund UniversityDortmundGermany
  3. 3.University of LuxembourgLuxembourgBelgium
  4. 4.Universidad de la RepúblicaMontevideoUruguay
  5. 5.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations