Journal of Grid Computing

, Volume 14, Issue 1, pp 23–39 | Cite as

CA-DAG: Modeling Communication-Aware Applications for Scheduling in Cloud Computing

  • Dzmitry Kliazovich
  • Johnatan E. Pecero
  • Andrei Tchernykh
  • Pascal Bouvry
  • Samee U. Khan
  • Albert Y. Zomaya


This paper addresses performance issues of resource allocation in cloud computing. We review requirements of different cloud applications and identify the need of considering communication processes explicitly and equally to the computing tasks. Following this observation, we propose a new communication-aware model of cloud computing applications, called CA-DAG. This model is based on Directed Acyclic Graphs that in addition to computing vertices include separate vertices to represent communications. Such a representation allows making separate resource allocation decisions: assigning processors to handle computing jobs, and network resources for information transmissions. The proposed CA-DAG model creates space for optimization of a number of existing solutions to resource allocation and for developing novel scheduling schemes of improved efficiency.


Cloud computing Communication awareness Resource allocation Scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Papadimitriou, C.H., Yannakakis, M.: Towards an architecture-independent analysis of parallel algorithms. SIAM J. Comput. 19(2), 322–328 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Santos, E.E., Schauser, K.E., Subramonian, R., von Eicken, T.: LogP: a practical model of parallel computation. Commun. ACM 39(11), 78–85 (1996)CrossRefGoogle Scholar
  3. 3.
    El-Rewini, H., Lewis, T.G.: Scheduling parallel program tasks onto arbitrary target machines. J. Parallel Distrib. Comput. 9(2), 138–153 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Sinnen, O., Sousa, L.A.: Communication contention in task scheduling. IEEE Trans. Parallel Distrib. Syst. 16(6), 503–515 (2005)CrossRefGoogle Scholar
  5. 5.
    Macey, B.S., Zomaya, A.Y.: A comparison of list scheduling heuristics for communication intensive task graphs. Cybern. Syst. 28(7), 535–546 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Drozdowski, M.: Scheduling with communication delays. In: Scheduling for Parallel Processing, ser. Computer Communications and Networks, pp 209–299. Springer, London (2009)Google Scholar
  7. 7.
    Kliazovich, D., Bouvry, P., Khan, S.U.: DENS: Data Center Energy-Efficient Network-Aware Scheduling. Clust. Comput. 16(1), 65–75 (2013)CrossRefGoogle Scholar
  8. 8.
    Pecero, J.E., Trystram, D., Zomaya, A.Y.: A new genetic algorithm for scheduling for large communication delays, pp 241–252. Euro-Par (2009)Google Scholar
  9. 9.
    Lepère, R., Trystram, D.: A new clustering algorithm for large communication delays. IPDPS (2002)Google Scholar
  10. 10.
    Kwok, Y.-K., Ahmad, I.: Dynamic critical-path scheduling: an effective technique for allocating task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7(5), 506–521 (1996)CrossRefGoogle Scholar
  11. 11.
    Ahmad, I., Kwok, Y.-K., Wu, M.-Y.: Analysis, evaluation, and comparison of algorithms for scheduling task graphs on parallel processors. In: Second International Symposium on Parallel Architectures, Algorithms, and Networks, pp 207–213 (1996)Google Scholar
  12. 12.
    Schatz, R., Varela, M., Timmerer, C.: Challenges of QoE management for cloud applications. IEEE Commun. Mag. 50(4), 28–36 (2012)CrossRefGoogle Scholar
  13. 13.
    Dongarra, J.: Trends in high performance computing: a historical overview and examination of future developments. IEEE Circuits Devices Mag. 22(1), 22–27 (2006)CrossRefGoogle Scholar
  14. 14.
    AbdelBaky, M., Parashar, M., Kim, H., Jordan, K.E., Sachdeva, V., Sexton, J., Jamjoom, H., Shae, Z.-Y., Pencheva, G., Tavakoli, R., Wheeler, M.F.: Enabling High-Performance Computing as a Service. Computer 45(10), 72–80 (2012)CrossRefGoogle Scholar
  15. 15.
    White paper: The impact of latency on application performance. Nokia Siemens Networks (2009)Google Scholar
  16. 16.
    Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the wild. In: The 10th Annual Conference on Internet Measurement (IMC), ACM, New York, NY, USA, pp 267–280 (2010)Google Scholar
  17. 17.
    Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of data center traffic: measurements & analysis. In: The 9th ACM SIGCOMM conference on Internet measurement conference (IMC), ACM, New York, NY, USA, pp 202–208 (2009)Google Scholar
  18. 18.
    Srikanth, G.U., Shanthi, A.P., Maheswari, V.U., Siromoney, A.: A Survey on Real Time Task Scheduling. Eur. J. Sci. Res. 69(1), 33–41 (2012)Google Scholar
  19. 19.
    Thulasiraman, K., Swamy, M.N.S.: 5.7 Acyclic Directed Graphs. Graphs: Theory and Algorithms, John Wiley and Son, p. 118. ISBN 978-0-471-51356-8Google Scholar
  20. 20.
    Hac, A., Sheng, C.: User Mobility Management in the PCS Network Through the Placement of Hierarchical Databases. Int. J Wireless Inf. Networks 5(3) (1998)Google Scholar
  21. 21.
    Browne, S.: Communication and synchronization issues in distributed multimedia database systems. Adv. Database Syst. 759, 381–396 (1993)Google Scholar
  22. 22.
    Macdonald, C., Ounis, I., Tonellotto, N.: Learning to predict response times for online query scheduling. In: 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, Portland OR, USA (2012)Google Scholar
  23. 23.
    Brutlag, J.D., Hutchinson, H., Stone, M.: User Preference and Search Engine Latency. In: JSM Proceedings, Qualtiy and Productivity Research Section, Alexandria, VA (2008)Google Scholar
  24. 24.
    Choudhury, P., Chakrabarti, P.P., Kumar, R.: Online Scheduling of Dynamic Task Graphs with Communication and Contention for Multiprocessors. IEEE Trans. Parallel Distrib. Syst. 23(1), 126–133 (2012)CrossRefGoogle Scholar
  25. 25.
    PengCheng, M., Nezan, J.-F., Raulet, M., Cousin, J.-G.: Advanced list scheduling heuristic for task scheduling with communication contention for parallel embedded systems. Sci. China Inf. Sci. 53 (11), 2272–2286 (2010)CrossRefzbMATHGoogle Scholar
  26. 26.
    Prasad, R., Dovrolis, C., Murray, M., Claffy, K.: Bandwidth estimation: metrics, measurement techniques, and tools. IEEE Network 17(6), 27–35 (2003)CrossRefGoogle Scholar
  27. 27.
    Plummer, D.C.: An Ethernet Address Resolution Protocol - or - Converting Network Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware. RFC 826, Internet Engineering Task Force (1982)Google Scholar
  28. 28.
    Postel, J.: Internet Control Message Protocol. Internet Engineering Task Force, RFC 792 (1981)Google Scholar
  29. 29.
    Spring, N., Wetherall, D., Ely, D.: Robust Explicit Congestion Notification (ECN). RFC 3540, Internet Engineering Task Force (2003)Google Scholar
  30. 30.
    Jain, M., Dovrolis, C.: End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput. IEEE/ACM Trans. Networking 111(14), 537–549 (2003)CrossRefGoogle Scholar
  31. 31.
    Kapoor, R., Chen, L.-J., Sanadidi, M.Y., Gerla, M.: Accuracy of link capacity estimates using passive and active approaches with CapProbe. In: Ninth International Symposium on Computers and Communications, pp 1085–1090 (2004)Google Scholar
  32. 32.
    Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the TCP congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev. 27 3, 67–82 (1997)CrossRefGoogle Scholar
  33. 33.
    Padhye, J., Firoiu, V., Towsley, D., Krusoe, J.: Modeling TCP throughput: A simple model and its empirical validation,”. In: ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, pp 303–314 (1998)Google Scholar
  34. 34.
    Ullman, J.D.: NP-Complete scheduling problems. J. Comput. Syst. Sci. 10, 384–393 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bozdag, D., Ozguner, F., Catalyurek, U.V.: Compaction of schedules and a two stage approach for duplication-based DAG scheduling. IEEE Trans. Parallel Distrib. Syst. 20(6), 857–871 (2009)CrossRefGoogle Scholar
  36. 36.
    Kruatrachue, B., Lewis, T.G.: Grain size determination for parallel processing. IEEE Software 5 (1), 23–32 (1988)CrossRefGoogle Scholar
  37. 37.
    Sarkar, V.: Partitioning and scheduling parallel programs for execution on multiprocessors. MIT Press, MA, USA (1989)zbMATHGoogle Scholar
  38. 38.
    Gerasoulis, A., Yang, T.: On the granularity and clustering of directed acyclic task graphs. IEEE Trans. Parallel Distrib. Syst. 4(6), 686–701 (1993)CrossRefGoogle Scholar
  39. 39.
    Juve, G., Deelman, E., Berriman, G.B., Berman, B.P., Maechling, P.: An Evaluation of the Cost and Performance of Scientific Workflows on Amazon EC2. J. Grid Comput. 10(1), 5–21 (2012)CrossRefGoogle Scholar
  40. 40.
    Zhang, F., Cao, J., Li, K., Khan, S.U., Hwang, K.: Multi-objective scheduling of many tasks in cloud platforms. Future Generation Computer Systems, Available online 18. ISSN 0167-739X (2013)Google Scholar
  41. 41.
    Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. AINA, 400–407 (2010)Google Scholar
  42. 42.
    Carbajal, A.H., Tchernykh, A., Yahyapour, R., Röblitz, T., Ramírez-Alcaraz, J., González-García, J.-L.: Multiple workflow scheduling strategies with user run time estimates on a grid. J. Grid Comput. 10(2), 325–346 (2012). doi: 10.1007/s10723-012-9215-6. Springer-Verlag New York, Inc. Secaucus, NJ, USA,CrossRefGoogle Scholar
  43. 43.
    Kliazovich, D., Bouvry, P., Khan, S.U.: GreenCloud: A packet-level simulator of energy-aware cloud computing data centers. J. Supercomput. 62(3), 1263–1283 (2012)CrossRefGoogle Scholar
  44. 44.
    Kliazovich, D., Pecero, J.E., Tchernykh, A., Bouvry, P., Khan, S.U., Zomaya, A.Y.: CA-DAG: Modeling Communication-Aware Applications for Scheduling in Cloud Computing Data Centers. In: IEEE 6th International Conference on Cloud Computing (IEEE CLOUD), pp 277–284. Santa Clara, CA, USA (2013), doi: 10.1109/CLOUD.2013.40
  45. 45.
    Batista, D.M., da Fonseca, N.L.S.: Robust scheduler for grid networks under uncertainties of both application demands and resource availability. Comput. Netw. 55, 3–19 (2011)CrossRefGoogle Scholar
  46. 46.
    Batista, D.M., da Fonseca, N.L.S.: Scheduling Grid Tasks in Face of Uncertain Communication Demands. IEEE Trans. Netw. Serv. Manag. 8, 93–102 (2011)CrossRefGoogle Scholar
  47. 47.
    Batista, D.M., da Fonseca, N.L.S., Miyazawa, F.K., Granelli, F.: Self-Adjustment of Resource Allocation for Grid Applications. Comput. Netw. 52, 1762–1781 (2008)CrossRefzbMATHGoogle Scholar
  48. 48.
    Batista, D.M., Chaves, L.J., da Fonseca, N.L.S., Ziviane, A.: Performance analysis of available bandwidth estimation tools for grid networks. J. Supercomput. 53, 103–121 (2010)CrossRefGoogle Scholar
  49. 49.
    Kliazovich, D., Arzo, S.T., Granelli, F., Bouvry, P., Khan, S.U.: e-STAB: Energy-Efficient Scheduling for Cloud Computing Applications with Traffic Load Balancing. In: IEEE International Conference on Green Computing and Communications (GreenCom), Beijing, China, pp 7–13 (2013)Google Scholar
  50. 50.
    Guzek, M., Kliazovich, D., Bouvry, P.: A Holistic Model for Resource Representation in Virtualized Cloud Computing Data Centers. In: IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Bristol, UK (2013)Google Scholar
  51. 51.
    Fiandrino, C., Kliazovich, D., Bouvry, P., Zomaya, A.Y.: Performance and energy efficiency metrics for communication systems of cloud computing data centers. IEEE Transactions on Cloud Computing (2015)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Dzmitry Kliazovich
    • 1
  • Johnatan E. Pecero
    • 1
  • Andrei Tchernykh
    • 2
  • Pascal Bouvry
    • 1
  • Samee U. Khan
    • 3
  • Albert Y. Zomaya
    • 4
  1. 1.University of LuxembourgLuxembourgLuxembourg
  2. 2.CICESE Research CenterEnsenadaMéxico
  3. 3.North Dakota State UniversityFargoUSA
  4. 4.University of SydneyDarlingtonAustralia

Personalised recommendations