Journal of Grid Computing

, Volume 13, Issue 2, pp 275–291 | Cite as

Passive Network Awareness as a Means for Improved Grid Scheduling

Article

Abstract

Grids enable sharing resources of heterogeneous nature and administration. In such distributed systems, the network is usually taken for granted which is potentially problematic due to the complexity and unpredictability of public networks that typically underlie grids. This article introduces GridMAP, a mechanism for considering the network state for enhancing grid scheduling. Network measurements are collected in a passive manner from a user-centric vantage point. This mechanism has been evaluated on a production e-science grid infrastructure, with results showing the ability of GridMAP to improve grid scheduling with minimal network, computational and deployment overheads.

Keywords

Network awareness Network analysis Network performance prediction Passive network measurement Grid scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akella, A., Seshan, S., Shaikh, A.: An empirical valuation of wide-area internet bottlenecks. In: Proceedings of ACM SIGCOMM IMC, pp. 101–114 (2003)Google Scholar
  2. 2.
    Cisco Visual Networking Index: Global mobile data traffic forecast update, 20122017. Tech. rep., Cisco Press (2013)Google Scholar
  3. 3.
    Lee, C., Lee, D.K., Yi, Y., Moon, S.: Operating a Network Link at 100 %. In: Proc. PAM, pp. 1–10 (2011)Google Scholar
  4. 4.
    Foster, I., Kesselman, C.: Globus: a metacomputing infrastructure toolkit. The International Journal of Supercomputer Applications and High Performance Computing 11(2), 115–128 (1997)CrossRefGoogle Scholar
  5. 5.
    Berman, F.: The grid: blueprint for a new computing infrastructure, chap. High-Performance Schedulers, pp. 279–309. Morgan Kaufmann (1998)Google Scholar
  6. 6.
    Batista, D.M., da Fonseca, N.L.S.: A survey of self-adaptive grids. IEEE Commun. Mag. 48(7), 94–100 (2010)CrossRefGoogle Scholar
  7. 7.
    Qureshi, M.B., Dehnavi, M.M., Min-Allah, N., Qureshi, M.S., Hussain, H., Rentifis, I., Tziritas, N., Loukopoulos, T., Khan, S.U., Xu, C.Z., et al.: Survey on grid resource allocation mechanisms. J. Grid. Comput., 1–43 (2014)Google Scholar
  8. 8.
    Agarwal, A., Kumar, P.: Multidimensional QoS Oriented Task Scheduling in Grid Environments. International Journal of Grid Computing & Applications (IJGCA) 2(1), 28–37 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Tomás, L., Caminero, A.C., Carrión, C., Caminero, B.: Network-aware meta-scheduling in advance with autonomous self-tuning system. Future Gener. Comp. Sys. 27(5), 486–497 (2011)CrossRefGoogle Scholar
  10. 10.
    Chinnaiah, V., Somasundaram, T.S.: A grid resource brokering strategy based on resource and network performance in grid. Future Gener. Comp. Sys. 28(3), 491–499 (2012)CrossRefGoogle Scholar
  11. 11.
    McClatchey, R., Anjum, A., Stockinger, H., Ali, A., Willers, I., Thomas, M.: Data intensive and network aware (DIANA) grid scheduling. J Grid Comput 5(1), 43–64 (2007)CrossRefGoogle Scholar
  12. 12.
    Pezaros, D., Sifalakis, M., Schmid, S., Hutchison, D.: Dynamic link measurements using active components. In: Proceedings of IFIP conference on active networks (2004)Google Scholar
  13. 13.
    He, Q., Dovrolis, C., Ammar, M.: On the predictability of large transfer TCP throughput. Comput. Netw. 51(14), 3959–3977 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Lowekamp, B.B.: Combining active and passive network measurements to build scalable monitoring systems on the grid. ACM SIGMETRICS Performance Evaluation Review 30(4), 19–26 (2003)CrossRefGoogle Scholar
  15. 15.
    Wolski, R.: Dynamically forecasting network performance using the network weather service. Clust. Comput. 1(1), 119–132 (1998)CrossRefGoogle Scholar
  16. 16.
    Vazhkudai, S., Schopf, J.M., Foster, I.T.: Predicting the performance of wide area data transfers. In: Proceedings of IPDPS, p. 270 (2002)Google Scholar
  17. 17.
    Yousaf, M.M., Welzl, M., Junaid, M.M.: Fog in the network weather service: a case for novel approaches. In: Proceedings of conference on networks for grid applied, pp. 1–6 (2007)Google Scholar
  18. 18.
    Goga, O., Teixeira, R.: Speed measurements of residential internet access. In: Proceedings PAM, pp. 168–178 (2012)Google Scholar
  19. 19.
    Huang, A.C., Steenkiste, P.: Network-sensitive service discovery. J. Grid. Comput. 1(3), 309–326 (2003)CrossRefGoogle Scholar
  20. 20.
    Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy, A., Venkataramani, A.: iPlane: an information plane for distributed services. In: Proceedings of USENIX OSDI, pp. 367–380 (2006)Google Scholar
  21. 21.
    Hullár, B., Laki, S., Stéger, J., Csabai, I., Vattay, G.: SONoMA: a service oriented network measurement architecture. Tech. Rep. TR-ELTE-CNL-2010/1. Eötvös Loránd University, Hungary (2010)Google Scholar
  22. 22.
    Wenwei, L., Dafang, Z., Jinmin, Y., Gaogang, X.: On evaluating the differences of TCP and ICMP in network measurement. Comput. Commun. 30(2), 428–439 (2007)CrossRefGoogle Scholar
  23. 23.
    Paxson, V.E.: Measurements and analysis of end-to-end internet dynamics. Ph.D. thesis, University of California at Berkeley (1998)Google Scholar
  24. 24.
    Ganguly, A., Agrawal, A., Boykin, P.O., Figueiredo, R.J.: WOW: self-organizing wide area overlay networks of virtual workstations. In: Proceedings of IEEE HPDC, pp. 30–42 (2006)Google Scholar
  25. 25.
    Raicu, I., Dumitrescu, C., Ripeanu, M., Foster, I.: The design, performance, and use of diperf: An automated distributed performance evaluation framework. J. Grid. Comput. 4(3), 287–309 (2006)CrossRefMATHGoogle Scholar
  26. 26.
    Zhang, X., Freschl, J.L., Schopf, J.M.: Scalability analysis of three monitoring and information systems: MDS2, R-GMA, and Hawkeye. J Parallel Distrib. Comput. 67(8), 883–902 (2007)CrossRefMATHGoogle Scholar
  27. 27.
    Fitzgerald, S., Foster, I., Kesselman, C., von Laszewski, G., Smith, W., Tuecke, S.: A directory service for configuring high-performance distributed computations. In: Proceedings of IEEE HPDC, pp. 365–375 (1997)Google Scholar
  28. 28.
    Cooke, A.W., Gray, A.J., Nutt, W., Magowan, J., Oevers, M., Taylor, P., Cordenonsi, R., Byrom, R., Cornwall, L., Djaoui, A., et al.: The relational grid monitoring architecture: mediating information about the grid. J. Grid. Comput. 2(4), 323–339 (2004)CrossRefGoogle Scholar
  29. 29.
    Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V., Wolski, R.: A grid monitoring architecture. Tech. rep., Global Grid Forum (2002)Google Scholar
  30. 30.
    Zanikolas, S., Sakellariou, R.: A taxonomy of grid monitoring systems. Future Gener. Comp. Sys. 21(1), 163–188 (2005). doi:10.1016/j.future.2004.07.002 CrossRefGoogle Scholar
  31. 31.
    Lee, S.: eTOP: End-to-end Performance Measurement Infrastructure on KOREN and APAN Links., http://master.apan.net/meetings/busan03/measurement/koren.ppt (2003)
  32. 32.
    Sacerdoti, F.D., Katz, M.J., Massie, M.L., Culler, D.E.: Wide area cluster monitoring with ganglia. In: Proceedings of IEEE CLUSTER, pp. 289–298 (2003)Google Scholar
  33. 33.
    Al-Ali, R.J., Amin, K., Von Laszewski, G., Rana, O.F., Walker, D.W., Hategan, M., Zaluzec, N.: Analysis and provision of qos for distributed grid applications. J. Grid. Comput. 2(2), 163–182 (2004)CrossRefGoogle Scholar
  34. 34.
    Elkhatib, Y.: Monitoring, analysing and predicting network performance in grids. Ph.D. thesis, Lancaster University (2011)Google Scholar
  35. 35.
    Elkhatib, Y., Edwards, C.: A survey-based study of grid traffic. In: Proceedings of conference on networks for grid applications (2007)Google Scholar
  36. 36.
    Savage, S.: Sting: A TCP-based network measurement tool. In: Proceedings of USENIX symposium on internet technologies and systems, vol. 2 (1999)Google Scholar
  37. 37.
    Horneffer, M.: Assessing Internet Performance Metrics Using Large-Scale TCP-SYN based Measurements. In: Proceedings of PAM (2000)Google Scholar
  38. 38.
    Jiang, H., Dovrolis, C.: Passive estimation of TCP round-trip times. ACM SIGCOMM Comput. Commun. Rev. 32(3), 75–88 (2002)CrossRefGoogle Scholar
  39. 39.
    Elkhatib, Y., Edwards, C., Mackay, M., Tyson, G.: Providing grid schedulers with passive network measurements. In: Proceedings of ICCCN (2009)Google Scholar
  40. 40.
    Network Measurement Working Group. http://nmwg.internet2.edu
  41. 41.
    Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17(4), 589–602 (1970)CrossRefMATHGoogle Scholar
  42. 42.
    White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed systems and networks. In: Proceedings of USENIX OSDI, pp. 255–270 (2002)Google Scholar
  43. 43.
    Marco, C., Fabio, C., Alvise, D., Antonia, G., Francesco, G., Alessandro, M., Moreno, M., Salvatore, M., Fabrizio, P., Luca, P., et al.: The gLite workload management system. In: Advances in grid and pervasive computing, pp. 256–268. Springer (2009)Google Scholar
  44. 44.
    AutoDock, the scripps research institute. http://autodock.scripps.edu/
  45. 45.
    Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)CrossRefGoogle Scholar
  46. 46.
    Jacq, N., Salzemann, J., Jacq, F., Legré, Y., Medernach, E., Montagnat, J., Maaß, A., Reichstadt, M., Schwichtenberg, H., Sridhar, M., Kasam, V., Zimmermann, M., Hofmann, M., Breton, V.: Grid-enabled virtual screening against malaria. J Grid Comp 6(1), 29–43 (2008)CrossRefGoogle Scholar
  47. 47.
    Kasam, V., Salzemann, J., Jacq, N., Maaß, A., Breton, V.: Large scale deployment of molecular docking application on computational grid infrastructures for combating malaria. In: Proceedings CCGrid, pp. 691–700 (2007)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.The School of Computing, CommunicationsLancaster UniversityLancasterUK

Personalised recommendations