Skip to main content
Log in

An Innovative Science Gateway for the Cherenkov Telescope Array

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The Cherenkov Telescope Array (CTA) is currently building the next generation, ground-based, very high-energy gamma-ray instrumentation. CTA is expected to collect very large datasets (in the order of petabytes) which will have to be stored, managed and processed. This paper presents a graphical user interface built inside a science gateway aiming at providing CTA-users with a common working framework. The gateway is WS-PGRADE/gUSE workflow-oriented and is equipped with a flexible SSO (based on SAML) to control user access for authentication and authorization. An interactive desktop environment is provided, called Astronomical & Physics Cloud Interactive Desktop (ACID). Users are able to exploit the graphical interface as provided natively by the tools included in ACID. A cloud data service shares and synchronizes data files and output results between the user desktop and the science gateway. Our solution is a first attempt towards an ecosystem of new technologies with a high level of flexibility to suit present and future requirements of the CTA community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronico, A., Barbera, R., Falzone, A., Kunszt, P., Lo Re, G., Pulvirenti, A., Rodolico, A.: Genius: a simple and easy way to access computational and data grids. Futur. Gener. Comput. Syst. 19(6), 805–813 (2003)

    Article  Google Scholar 

  2. Schroeder, W., Martin, K., Avila, L.S., Law, C.C.: The Visualization Toolkit User’s Guide, Version 4.0, in Kitware, version 4 (2001)

  3. Kocot, J., Szepieniec, T., Harezlak, D., Noga, K., Sterzel, M.: Insilicolab–managing complexity of chemistry computations. In: Building a National Distributed e-Infrastructure–PL-Grid, pp. 265–275. Springer (2012)

  4. Riedel, M., Wittenburg, P., Reetz, J., et al.: A data infrastructure reference model with applications: towards realization of a ScienceTube vision with a data replication service. J. Internet Serv. Appl. 4(1), 1–17 (2013)

    Article  Google Scholar 

  5. Towns, J., Cockerill, T., Dahan, M., Foster, I., et al.: XSEDE: accelerating scientific discovery. J. Internet Serv. Appl. 16(5), 62–74 (2014)

    Google Scholar 

  6. Terstyanszky, G., Kukla, T., Kiss, T., Winter, S., Kacsuk, P., Balasko, A.: Sharing Workflows through Coarse-Grained Workflow Interoperability. In: GRID’2012, 5th International Conference on Distributed Computing and Grid Technologies in Science and Education, Dubna, Russia, 17-21 July 2012

  7. Goecks, J., Nekrutenko, A, Anton, T., Taylor, J.: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11(8), R86 (2010)

    Article  Google Scholar 

  8. Ludscher, B., Altintas, I., Berkley, C., et al.: Scientific workflow management and the Kepler system. Concurr. Comput. Pract. Experience 18(10), 1039–1065 (2006)

    Article  Google Scholar 

  9. Glatard, T., Montagnat, J., Lingrand, D., et al.: Flexible and efficient workflow deployment of data-intensive applications on grids with moteur. Int. J. High Perform. Comput. Appl. 22(3), 347–360 (2008)

    Article  Google Scholar 

  10. Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A., Karoczkai, K., Marton, I.: Ws-pgrade/guse generic dci gateway framework for a large variety of user communities. Comput. Sci. Eng. 10(4), 601–630 (2012)

    Google Scholar 

  11. Kacsuk, P., Kovacs, J., Farkas, Z., Marosi, A.C., Balaton, Z.: Towards a powerful european dci based on desktop grids. J. Grid Comput. 9(2), 219–239 (2011)

    Article  Google Scholar 

  12. Marzolla, M., et al.: Open standards-based interoperability of job submission and management interfaces across the grid middleware platforms glite and unicore. In: e-Science and Grid Computing, IEEE International Conference, vol. 1, pp. 592–601 (2007)

  13. Kacsuk, P. (ed.): Science Gateways for Distributed Computing Infrastructures: Development Framework and Exploitation by Scientific User Communities, p. 301. Springer (2004). (ISBN:978-3-319-11267-1)

  14. Gesing, S., et al.: A single sign-on infrastructure for science gateways on a use case for structural bioinformatics. J. Grid Comput. 10(4), 769–790 (2012)

    Article  Google Scholar 

  15. Borne, K.: Virtual observatories, data mining, and astroinformatics. In: Planets, Stars and Stellar Systems, pp. 403–443. Springer (2013)

  16. Woitaszek, M., Metcalfe, T., Shorrock, I.: Amp: a science-driven web-based application for the teragrid. In: Proceedings of the 5th Grid Computing Environments Workshop, vol. 1, pp. 1–7 (2009)

  17. Barbera, R., Andronico, G., Donvito, G., Falzone, A., Keijser, J., Rocca, G.L., Milanesi, L., Maggi, G.P., Vicario, S.: A grid portal with robot certificates for bioinformatics phylogenetic analyses. Concurr. Comput. Pract. Experience 23(3), 246–255 (2011)

    Article  Google Scholar 

  18. Tsaregorodtsev, A., Bargiotti, M., Brook, N., Ramo, A.C., Castellani, G., Charpentier, P., Cioffi, C., Closier, J., Diaz, R.G., Kuznetsov, G, et al.: Dirac: a community grid solution. In: Journal of Physics: Conference Series, vol. 119, no. 6, p. 062048. IOP Publishing (2008)

  19. Shahand, S., Benabdelkader, A., Jaghoori, M.M., Mourabit, M.A., Huguet, J., Caan, M.W., Kampen, A.H., Olabarriaga, S.D.: A data-centric neuroscience gateway: design, implementation, and experiences. Concurr. Comput. Pract. Experience (2014)

  20. Jaghoori, M., van Altena, A., Bleijlevens, B., Olabarriaga, S.: A grid-enabled virtual screening gateway. In: Proceedings of the 6th International Workshop on Science Gateways (2014)

  21. Pierantoni, G., Coghlan, B., Kenny, E., Gallagher, P., Perez-Suarez, D.: Extending the sheba propagation model to reduce parameter-related uncertainties. Comput. Sci. 14(2), 253–272 (2012)

    Google Scholar 

  22. Pierantoni, G., Carley, E.: Metaworkflows and workflow interoperability for heliophysics. IEEE Xplore Digit. Libr. (2014)

  23. Gordienko, Y., Bekenov, L., Gatsenko, O., Zasimchuk, E., Tatarenko, V.: Complex workflow management and integration of distributed computing resources by science gateway portal for molecular dynamics simulations in materials science. In: Proc. 3rd International Conference on High Performance Computing (HPC-UA 2013), October 8-10, 2013, Kyiv, Ukraine (2014)

  24. Costa, A., Becciani, U., Massimino, P., Krokos, M., Caniglia, G., Gheller, C., Grillo, A., Vitello, F.: Visivoweb: a www environment for large-scale astrophysical visualization. Publ. Astron. Soc. Pac. 123(902), 503–513 (2011)

    Article  Google Scholar 

  25. Massimino, P., Costa, A., Becciani, U., Vitello, F., Sciacca, E.: Acid: an interactive desktop for cta science gateway. In: Proceedings of the 6th International Workshop on Science Gateways (2014)

  26. Balasko, A., Farkas, Z., Kacsuk, P.: Building science gateways by utilizing the generic ws-pgrade/guse workflow system. Comput. Sci. 14(2) (2013)

  27. Hassan, A., Fluke, C.J.: Scientific visualization in astronomy: Towards the petascale astronomy era. Publ. Astron. Soc. Pac. 28(2), 150–170 (2011)

    Article  Google Scholar 

  28. Sciacca, E., Bandieramonte, M., Becciani, U., Costa, A., Krokos, M., Massimino, P., Petta, C., Pistagna, C., Riggi, S., Vitello, F.: Visivo workflow-oriented science gateway for astrophysical visualization. In 2013 21st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 164–171. IEEE (2013)

  29. Becciani, U., Costa, A., Antonuccio-Delogu, V., Caniglia, G., Comparato, M., Gheller, C., Jin, Z., Krokos, M., Massimino, P.: Visivo–integrated tools and services for large-scale astrophysical visualization. Publ. Astron. Soc. Pac. 122(887), 119–130 (2010)

    Article  Google Scholar 

  30. Costa, A., Manzato, P., Becciani, U., Comparato, M., Costa, V., Gasparo, F., Gheller, C., Grillo, A., Molinaro, M., Pasian, F, et al.: The tvo archive for cosmological simulations: Web services and architecture. Publ. Astron. Soc. Pac. 120(870), 933–944 (2008)

    Article  Google Scholar 

  31. Caniglia, G., Krokos, M., Becciani, U., Gheller, C., Nichol, R., Comparato, M., Costa, A., Grillo, A., Jin, Z., Massimino, P, et al.: Visual discovery in large-scale astrophysical datasets; experiences using the sloan digital sky survey. In: 2nd International Conference in Visualisation, 2009. VIZ’09, pp. 10–15. IEEE (2009)

  32. Becciani, U., Antonuccio-Delogu, V., Costa, A., Petta, C.: Cosmological simulations and data exploration: a testcase on the usage of grid infrastructure. J. Grid Comput. 10(2), 265–277 (2012)

    Article  Google Scholar 

  33. Riggi, S., Antonuccio, V., Bandieramonte, M., Becciani, U., Belluomo, F., Belluso, M., Billotta, S., Bonanno, G., Carbone, B., Costa, A, et al.: A large area cosmic ray detector for the inspection of hidden high-z materials inside containers. In: Journal of Physics: Conference Series, vol. 409, no. 1, p. 012046. IOP Publishing (2013)

  34. Dolag, K., Reinecke, M., Gheller, C., Imboden, S.: Splotch: visualizing cosmological simulations. New J. Phys. 10(12), 125006 (2008)

    Article  Google Scholar 

  35. Jin, Z., Krokos, M., Rivi, M., Gheller, C., Dolag, K., Reinecke, M.: High-performance astrophysical visualization using splotch. Procedia Comput. Sci. 1(1), 1775–1784 (2010)

    Article  Google Scholar 

  36. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. (TOG) 9(3), 245–261 (1990)

    Article  MATH  Google Scholar 

  37. Rivi, M., Gheller, C., Krokos, M., Dolag, K., Reinecke, M.: Gpu accelerated particle visualization with splotch, arXiv preprint arXiv:1309.1114 (2013)

  38. Sciacca, E., Bandieramonte, M., Becciani, U., Costa, A., Krokos, M., Massimino, P., Petta, C., Pistagna, C., Riggi, S., Vitello, F.: Visivo science gateway: a collaborative environment for the astrophysics community. In: Proceedings of the 5th International Workshop on Science Gateways (2013)

  39. Chirigati, F., Silva, V., Ogasawara, E., de Oliveira, D., Dias, J., Porto, F., Valduriez, P., Mattoso, M.: Evaluating parameter sweep workflows in high performance computing. In: Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, p. 2. ACM (2012)

  40. Hajnal, Á., Farkas, Z., Kacsuk, P., Pintér, T.: Remote Storage Resource Management in WS-PGRADE/gUSE. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures: Development Framework and Exploitation by Scientific User Communities. (ISBN:978-3-319-11267-1), pp 69–81. Springer (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, A., Massimino, P., Bandieramonte, M. et al. An Innovative Science Gateway for the Cherenkov Telescope Array. J Grid Computing 13, 547–559 (2015). https://doi.org/10.1007/s10723-015-9330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-015-9330-2

Keywords

Navigation