Journal of Grid Computing

, Volume 13, Issue 3, pp 309–327 | Cite as

Visual and Audio Monitoring of Island Based Parallel Evolutionary Algorithms

  • Evelyne LuttonEmail author
  • Hugo Gilbert
  • Waldo Cancino
  • Benjamin Bach
  • Joseph Pallamidessi
  • Pierre Parrend
  • Pierre Collet


Monitoring and visualisation tools are currently attracting more and more attention in order to understand how search spaces are explored by complex optimisation ecosystems such as parallel evolutionary algorithms based on island models. Multilevel visualisation is actually a desirable feature for facilitating the monitoring of computationally expensive runs involving several hundreds of computers during hours or even days. In this paper we present two components of a future multilevel monitoring system: MusEAc, a high level, audio monitoring allowing to listen to a run and tune it in real time and GridVis, a lower lever, more precise a posteriori visualisation tool that lets the user understand why the algorithm has performed well or bad.


Parallel evolutionary algorithms Island model Visualisation Audio monitoring Musicalisation EASEA Computational ecosystem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grefenstette, J.: Parallel Adaptive Algorithms for Function Optimization:(preliminary Report). Computer Science Department, Vanderbilt University, Vanderbilt University. Department of Computer Science (1981)Google Scholar
  2. 2.
    Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. Evol. Comput., IEEE Trans. 6(5), 443–462 (2002)CrossRefGoogle Scholar
  3. 3.
    Collet, P., F.: Automatic parallelization of EC on GPGPUs and clusters of GPGPU machines with EASEA and EASEA-CLOUD. Natural Computing Series. In: Massively Parallel Evolutionary Computation on Gpgpus. In: Tsutsui, S., Collet, P. (eds.) , pp. 35–62. Springer-Verlag New York Incorporated (2013)Google Scholar
  4. 4.
    Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: On separability, population size and convergence. J. Comput. Inf. Technol. 7, 33–48 (1999)Google Scholar
  5. 5.
    Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary algorithms:trends and challenges. IEEE Transactions on Evolutionary Computation (2014) to appearGoogle Scholar
  6. 6.
    Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)CrossRefGoogle Scholar
  7. 7.
    Lutton, E., Fekete, J.D.: Visual analytics of ea data. In: Genetic and Evolutionary Computation Conference, GECCO 2011. (2011) July 12-16, 2011, Dublin, IrelandGoogle Scholar
  8. 8.
    Lutton, E., Tonda, A., Gaucel, S., Foucquier, J., Riaublanc, A., Perrot, N.: Food model exploration through evolutionary optimization coupled with visualization: application to the prediction of a milk gel structure. In: From Model Foods to Food Models. DREAM Project’s International Conference (2013)Google Scholar
  9. 9.
    Pohlheim, H., AG, D.: Understanding the Course and State of Evolutionary Optimizations Using Visualization: Ten Years of Industry Experience with Evolutionary Algorithms. Artif. Life 12, 217–227 (2006)CrossRefGoogle Scholar
  10. 10.
    Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. Visualization and Computer Graphics. IEEE Trans. 19(12), 2376–2385 (2013)Google Scholar
  11. 11.
    Moreta, S., Telea, A.: Multiscale visualization of dynamic software logs. In: Proceedings of the 9th Joint Eurographics / IEEE VGTC Conference on Visualization. EUROVIS’07, Aire-la-Ville, Switzerland, Switzerland, Eurographics Association, pp. 11–18 (2007)Google Scholar
  12. 12.
    Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it easea. In: Parallel Problem Solving from Nature PPSN VI, pp. 891–901. Springer (2000)Google Scholar
  13. 13.
    Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: Easea: Specification and execution of evolutionary algorithms on gpgpu. Soft Computing - A Fusion of Foundations, Methodologies and Applications 1 Special issue on Evolutionary Computation on General Purpose Graphics Processing UnitsGoogle Scholar
  14. 14.
    Jiang, J., Jorda, J.L., Yu, J., Baumes, L.A., Diaz-Cabanas, E.M.M.J., Kolb, U., Corma, A.: Synthesis and structure determination of the hierarchical meso-microporous zeolite itq-43. Science 333(6046), 1131–1134 (2011)CrossRefGoogle Scholar
  15. 15.
    Pauri, F., Pierelli, F., Chatrian, G.E., Erdly, W.W.: Long-term eeg-video-audio monitoring: computer detection of focal eeg seizure patterns. Electroencephalogr. Clin. Neurophysiol. 82(1), 1–9 (1992)CrossRefGoogle Scholar
  16. 16.
    Matúš, P., Eva, V., L’ubomír, D., Anton, Č.: The joint database of audio events and backgrounds for monitoring of urban areas. J. Electr. Electr. Eng. 4(1) (2011)Google Scholar
  17. 17.
    Colombelli-Négrel, D., Robertson, J., Kleindorfer, S.: A new audio-visual technique for effectively monitoring nest predation and the behaviour of nesting birds. Emu 109(1), 83–88 (2009)CrossRefGoogle Scholar
  18. 18.
    Moulines, E., Laroche, J.: Non-parametric techniques for pitch-scale and time-scale modification of speech. Speech Commun. 16(2), 175–205 (1995)CrossRefGoogle Scholar
  19. 19.
    Herold, N.: Timbre et forme. l’utilisation formelle du timbre dans la musique pour piano du xix siecle. PhD thesis, Université de Strasbourg (2011)Google Scholar
  20. 20.
    Hérold, N.: L’analyse formelle du timbre: éléments pour une approche méthodologique. In: Recherche dans les arts: présentation des travaux en cours-EHESS (2010)Google Scholar
  21. 21.
    Chemillier, M.: György ligeti et la logique des textures. Anal. Music. 38, 75–85 (2001)Google Scholar
  22. 22.
    Welch, J.: An evidence-based approach to reduce nuisance alarms and alarm fatigue. Biomed. Ins. Technol. 45(s1), 46–52 (2011)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Tenenbaum, G., Lidor, R., Lavyan, N., Morrow, K., Tonnel, S., Gershgoren, A., Meis, J., Johnson, M.: The effect of music type on running perseverance and coping with effort sensations. Psychol. Sport Exerc. 5(2), 89–109 (2004)CrossRefGoogle Scholar
  24. 24.
    Pelletier, C.L.: The effect of music on decreasing arousal due to stress: A meta-analysis. J. Music Ther. 41(3), 192–214 (2004)CrossRefGoogle Scholar
  25. 25.
    Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Tory, M.: User studies in visualization: A reflection on methods. In: Huang, W. (ed.) Handbook of Human Centric Visualization, pp. 411–426. Springer, New York (2014)CrossRefGoogle Scholar
  27. 27.
    Mouginot, P.: Pithoprakta, de iannis xenakisGoogle Scholar
  28. 28.
    Spears, W.M.: An overview of multidimensional visualization techniques. In: Evolutionary Computation Visualization Workshop. In: Collins, T. D. (ed.) , USA (1999)Google Scholar
  29. 29.
    Routen, T.: Techniques for the visualisation of genetic algorithms. In: The First IEEE Conference on Evolutionary Computation. Volume II, pp. 846–851 (1994)Google Scholar
  30. 30.
    Shine, W., Eick, C.: Visualizing the evolution of genetic algorithm search processes. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pp. 367–372. IEEE Press (1997)Google Scholar
  31. 31.
    Wu, A.S., Jong, K.A.D., Burke, D.S., Grefenstette, J.J., Ramsey, C.L.: Visual analysis of evolutionary algorithms. In: In Proceedings of the 1999 Conference on Evolutionary Computation (CEC’99), pp. 1419–1425. IEEE Press (1999)Google Scholar
  32. 32.
    Hart, E., Ross, P.: Gavel - a new tool for genetic algorithm visualization. IEEE Trans. Evol. Comput. 5(4), 335–348 (2001)CrossRefGoogle Scholar
  33. 33.
    Mach, M., Zetakova, Z.: Visualising genetic algorithms: A way through the Labyrinth of search space. In: Intelligent Technologies - Theory and Applications. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) pp. 279–285. IOS Press, Amsterdam (2002)Google Scholar
  34. 34.
    Bedau, M.A., Joshi, S., Lillie, B.: Visualizing waves of evolutionary activity of alleles. In: Proceedings of the 1999 GECCO Workshop on Evolutionary Computation Visualization, pp. 96–98 (1999)Google Scholar
  35. 35.
    Bullock, S., Bedau, M.A.: Exploring the dynamics of adaptation with evolutionary activity plots. Artif. Life 12, 193–197 (2006)CrossRefGoogle Scholar
  36. 36.
    Pohlheim, H.: Visualization of evolutionary algorithms - set of standard techniques and multidimensional visualization. In: GECCO’99 - Proceedings of the Genetic and Evolutionary Computation Conference, pp. 533–540, San Francisco, CA. (1999)Google Scholar
  37. 37.
    Pohlheim, H.: Geatbx - genetic and evolutionary algorithm toolbox for matlab
  38. 38.
    Computer, A.K., Kerren, A.: Eavis: A visualization tool for evolutionary algorithms. In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 05), pp. 299–301 (2005)Google Scholar
  39. 39.
    Parmee, I., Abraham, J.: Supporting implicit learning via the visualisation of coga multi-objective data. In: CEC2004, Congress on Evolutionary Computation, 19-23 June. Volume 1, pp. 395 – 402 (2004)Google Scholar
  40. 40.
    Collins, T.D.: In: Visualizing evolutionary computation, pp. 95–116. Springer-Verlag New York, Inc., NY, USA (2003)Google Scholar
  41. 41.
    Daida, J., Hilss, A., Ward, D., Long, S.: Visualizing tree structures in genetic programming. Genet. Program Evolvable Mach. 6, 79–110 (2005)CrossRefGoogle Scholar
  42. 42.
    Kohl, J., Casavant, T.: A software engineering, visualization methodology for parallel processing systems. In: Computer Software and Applications Conference, 1992. COMPSAC ’92. Proceedings., Sixteenth Annual International, pp. 51–56 (1992)Google Scholar
  43. 43.
    Morrow, T.M., Ghosh, S.: Divide: Distributed visual display of the execution of asynchronous, distributed algorithms on loosely-coupled parallel processors. In: Proc. Visualization ’93, pp. 166–173. IEEE Computer Society Press (1993)Google Scholar
  44. 44.
    Brown, J., Martin, P., Paku, N., Turner, G.: Visualisations of parallel algorithms for reconfigurable torus computers. In: Computer Human Interaction Conference, 1998. Proceedings. 1998 Australasian, pp. 152–159 (1998)Google Scholar
  45. 45.
    Price, B.A., Baecker, R., Small, I.S.: A principled taxonomy of software visualization. J. Vis. Lang. Comput. 4(3), 211–266 (1993)CrossRefGoogle Scholar
  46. 46.
    Urquiza-Fuentes, J., Velázquez-Iturbide, J.A.: A survey of successful evaluations of program visualization and algorithm animation systems. Trans. Comput. Educ. 9(2), 9:1–9:21 (2009)CrossRefGoogle Scholar
  47. 47.
    Wilkinson, L., Friendly, M.: The history of the cluster heat map. Am. Stat. 63(2), 179–184 (2009)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Ghoniem, M., Fekete, J.D., Castagliola, P.: On the readability of graphs using node-link and matrix-based representations: controlled experiment and statistical analysis. Inform. Vis. J. 4(2), 114–135 (2005)CrossRefGoogle Scholar
  49. 49.
    Brandes, U., Nick, B.: Asymmetric relations in longitudinal social networks. IEEE Trans. Vis. Comput. Graph. 17(12), 2283–2290 (2011)CrossRefGoogle Scholar
  50. 50.
    Bach, B., Pietriga, E., Fekete, J.D.: Visualizing Dynamic Networks with Matrix Cubes. In: SICCHI Conference on Human Factors in Computing Systems (CHI). ACM, Toronto, Canada (2014)CrossRefGoogle Scholar
  51. 51.
    Pryke, A., Mostaghim, S., Nazemi, A.: Evolutionary Multi-Criterion Optimization. Volume 4403 of Lecture Notes in Computer Science. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) , pp. 361–375. Springer Berlin Heidelberg (2007)Google Scholar
  52. 52.
    Alper, B., Bach, B., Henry Riche, N., Isenberg, T., Fekete, J.D.: Weighted graph comparison techniques xfor brain connectivity analysis. In: Proceedings of ACM CHI Conference on Human Factors in Computing Systems, pp. 483–492 (2013)Google Scholar
  53. 53.
    Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of graphs using node-link and matrix-based representations. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 17–24. INFOVIS ’04 (2004)Google Scholar
  54. 54.
    Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    Lutton, E., Collet, P., Louchet, J.: EASEA comparisons on test functions: Galib versus eo. In: EA01 Conference on Artificial Evolution, Le Creusot, France (2001)Google Scholar
  56. 56.
    Maitre, O., Krueger, F., Querry, S., Lachiche, N., Collet, P.: Easea: specification and execution of evolutionary algorithms on gpgpu. Soft Comput. 16(2), 261–279 (2012)CrossRefGoogle Scholar
  57. 57.
    Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Parallel Problem Solving from Nature - PPSN VI 6th International Conference. In: Schoenauer, M., Deb, K., Rudolf, G., Yao, X., Lutton, E., J.J., M., Schwefel, H.P. (eds.) . LNCS 1917, pp. 16–20. Springer Verlag, Paris, France (2000)Google Scholar
  58. 58.
    Tsutsui, S., Collet, P.: Massively Parallel Evolutionary Computation on Gpgpus. Natural Computing Series. Springer-Verlag New York Incorporated (2013)Google Scholar
  59. 59.
    Alba, E., Tomasini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Evelyne Lutton
    • 1
    Email author
  • Hugo Gilbert
    • 2
  • Waldo Cancino
    • 3
  • Benjamin Bach
    • 3
  • Joseph Pallamidessi
    • 4
  • Pierre Parrend
    • 4
    • 5
  • Pierre Collet
    • 4
  1. 1.INRA, UMR GMPAThiverval-GrignonFrance
  2. 2.ENSTA ParisTechPalaiseau CedexFrance
  3. 3.INRIA Saclay-Ile-de-France, AVIZ teamOrsay CedexFrance
  4. 4.ICube laboratory, and ECCE e-laboratory, CS-DC UNESCO UniTwinStrasbourg UniversityStrasbourgFrance
  5. 5.ECAM Strasbourg-Europe 2, Rue de MadridStrasbourg CedexFrance

Personalised recommendations