Journal of Grid Computing

, Volume 13, Issue 3, pp 329–349 | Cite as

The EvoSpace Model for Pool-Based Evolutionary Algorithms

  • Mario García-Valdez
  • Leonardo TrujilloEmail author
  • Juan-J Merelo
  • Francisco Fernández de Vega
  • Gustavo Olague


This work presents the EvoSpace model for the development of pool-based evolutionary algorithms (Pool-EA). Conceptually, the EvoSpace model is built around a central repository or population store, incorporating some of the principles of the tuple-space model and adding additional features to tackle some of the issues associated with Pool-EAs; such as, work redundancy, starvation of the population pool, unreliability of connected clients or workers, and a large parameter space. The model is intended as a platform to develop search algorithms that take an opportunistic approach to computing, allowing the exploitation of freely available services over the Internet or volunteer computing resources within a local network. A comprehensive analysis of the model at both the conceptual and implementation levels is provided, evaluating performance based on efficiency, optima found and speedup, while providing a comparison with a standard EA and an island-based model. The issues of lost connections and system parametrization are studied and validated experimentally with encouraging results, that suggest how EvoSpace can be used to develop and implement different Pool-EAs for search and optimization.


Pool-based evolutionary algorithms Distributed evolutionary algorithms Heterogeneous computing platforms for bioinspired algorithms Parameter setting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. John Wiley & Sons (2005)Google Scholar
  2. 2.
    Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C., Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Data management and transfer in high-performance computational grid environments. Parallel Comput. 28(5), 749–771 (2002)CrossRefGoogle Scholar
  3. 3.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  4. 4.
    Baxevanidis, K., Davies, H., Foster, I., Gagliardi, F.: Grids and research networks as drivers and enablers of future internet architectures. Comput. Netw. 40(1), 5–17 (2002)CrossRefGoogle Scholar
  5. 5.
    Bollini, A., Piastra, M.: Distributed and persistent evolutionary algorithms: A design pattern. In: Proceedings of the Second European Workshop on Genetic Programming, pp. 173–183. Springer-Verlag, London, UK, UK (1999)Google Scholar
  6. 6.
    Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: A framework for the reusable design of parallel and distributed metaheuristics. J. Heuristics 10(3), 357–380 (2004)CrossRefGoogle Scholar
  7. 7.
    Cantú-Paz, E.: Parameter setting in parallel genetic algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, volume 54 Studies in Computational Intelligence, pp 259–276. Springer (2007)Google Scholar
  8. 8.
    Cole, N., Desell, T.J., Gonzalez, D.L, de Vega, F.F., Magdon-Ismail, M., Newberg, H.J., Szymanski, B.K., Varela, C.A.: Evolutionary algorithms on volunteer computing platforms: The milkyway@ home project, pp 63–90. Springer (2010)Google Scholar
  9. 9.
    Cotillon, A., Valencia, P., Jurdak, R.: Android genetic programming framework Proceedings of the 15th European conference on Genetic Programming, EuroGP’12, pp 13–24. Springer, Berlin, Heidelberg (2012)Google Scholar
  10. 10.
    Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the web services web: An introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing 6(2), 86–93 (2002)CrossRefGoogle Scholar
  11. 11.
    De Jong, K.A., Potter, M.A., Spears, W.M.: Using problem generators to explore the effects of epistasis. In: Bäck T. (ed.) Proceedings of the 7th International Conference on Genetic Algorithms, 338–345. Morgan Kauffman (1997)Google Scholar
  12. 12.
    De Jong, K.A., Spears, W.M.: An analysis of the interacting roles of population size and crossover in genetic algorithms Proceedings of the 1st Workshop on Parallel Problem Solving from Nature, PPSN I, pp 38–47. Springer, London (1991)Google Scholar
  13. 13.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)Google Scholar
  14. 14.
    Fazenda, P., McDermott, J., O’Reilly, U.M.: A library to run evolutionary algorithms in the cloud using mapreduce. In: di Chio, C., et al. (eds.) Applications of Evolutionary Computation, volume 7248 LNCS, pp. 416–425. Springer, Berlin Heidelberg (2012)Google Scholar
  15. 15.
    Fernández De Vega, F., Olague, G., Trujillo, L., Lombraña González, D.: Customizable Execution Environments for Evolutionary Computation Using BOINC + Virtualization. Nat. Comput. 12(2), 163–177 (2013)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: Evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  18. 18.
    Garcia-Arenas, M., Merelo, J.J., Mora, A.M., Castillo, P., Romero, G., Laredo, J.: Assessing speed-ups in commodity cloud storage services for distributed evolutionary algorithms. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 304–311. IEEE (2011)Google Scholar
  19. 19.
    Garcia-Valdez, M., Mancilla, A., Trujillo, L., Merelo, J.J., Fernandez-de Vega, F.: Is there a free lunch for cloud-based evolutionary algorithms?. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1255–1262 (2013)Google Scholar
  20. 20.
    Garcia-Valdez, M., Trujillo, L., Fernández de Vega, F., Merelo Guervós, J., Olague, G.: Evospace-interactive: A framework to develop distributed collaborative-interactive evolutionary algorithms for artistic design. In: Machado, P., et al. (eds.) Evolutionary and Biologically Inspired Music, Sound, Art and Design, LNCS, vol. 7834, pp. 121–130. Springer, Berlin Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    García-Valdez, M., Trujillo, L., Fernández de Vega, F., Merelo Guervós, J.J., Olague, G.: EvoSpace: A Distributed Evolutionary Platform Based on the Tuple Space Model. In: Esparcia-Alcázar, A., et al. (eds.) Applications of Evolutionary Computation, LNCS, vol. 7835, pp. 499–508. Springer, Berlin Heidelberg (2013)Google Scholar
  22. 22.
    Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang. Syst. 7 (1), 80–112 (1985)CrossRefzbMATHGoogle Scholar
  23. 23.
    Gong, Y., Fukunaga, A.: Distributed island-model genetic algorithms using heterogeneous parameter settings. In: IEEE Congress on Evolutionary Computation, pp. 820–827. IEEE (2011)Google Scholar
  24. 24.
    Klein, J., Spector, L.: Unwitting distributed genetic programming via asynchronous JavaScript and XML. Proceedings of the 9th annual conference on Genetic and evolutionary computation, GECCO ’07, pp. 1628–1635. ACM, New York (2007)Google Scholar
  25. 25.
    Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation, Studies in Computational Intelligence, vol. 147. Springer (2008)Google Scholar
  26. 26.
    Langdon, W.B. In: Keijzer, M., O’Reilly, U.M., Lucas, S.M., Costa, E., Soule, T. (eds.) : Global distributed evolution of l-systems fractals, pp 349–358. Springer (2004)Google Scholar
  27. 27.
    Lobo, F.G., Lima, C.F., Michalewicz, Z.: Parameter Setting in Evolutionary Algorithms. Springer Publishing Company, Incorporated (2007)Google Scholar
  28. 28.
    Merelo, J.J., Castillo, P., Mora, A., Esparcia-Alcázar, A., Rivas-Santos, V.: NodEO, a multi-paradigm distributed evolutionary algorithm platform in javascript. Proceedings of the 2014 conference companion on Genetic and evolutionary computation companion, pp. 1155–1162. ACM (2014)Google Scholar
  29. 29.
    Merelo, J.J., Fernandes, C.M., Mora, A.M., Esparcia, A.I.: Sofea: A pool-based framework for evolutionary algorithms using couchdb Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’12, pp 109–116. ACM, New York (2012)Google Scholar
  30. 30.
    Merelo, J.J., Mora, A., Fernandes, C., Esparcia-Alcazar, A., Laredo, J.: Pool vs. island based evolutionary algorithms: An initial exploration. In: P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2012 Seventh International Conference on, pp. 19–24 (2012)Google Scholar
  31. 31.
    Merelo-Guervós, J.J., Mora, A., Cruz, J.A., Esparcia, A.I.: Pool-based distributed evolutionary algorithms using an object database. Proceedings of the 2012 European conference on Applications of Evolutionary Computation, EvoApplications’12, pp. 446–455. Springer, Berlin, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Merelo-Guervos, J.J., Mora, A., Cruz, J.A., Esparcia-Alcazar, A.I., Cotta, C.: Scaling in distributed evolutionary algorithms with persistent population 2012 IEEE Congress on Evolutionary Computation (CEC), pp 1–8. IEEE Comuter Society (2012)Google Scholar
  33. 33.
    Merelo Guervos, J.J., Valdivieso, P.A.C., Laredo, J.L.J., García, A.M., Prieto, A.: Asynchronous distributed genetic algorithms with JavaScript and JSON. IEEE Congress on Evolutionary Computation, pp. 1372–1379. IEEE (2008)Google Scholar
  34. 34.
    Oram, A. (ed.): Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly & Associates, Inc., Sebastopol (2001)Google Scholar
  35. 35.
    Paechter, B., Back, T., Schoenauer, M., Sebag, M., Eiben, A., Merelo, J.J., Fogarty, T.: A distributed resource evolutionary algorithm machine (DREAM). In: Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, vol. 2, pp. 951–958 vol.2 (2000)Google Scholar
  36. 36.
    Roy, G., Lee, H., Welch, J.L., Zhao, Y., Pandey, V., Thurston, D.: A distributed pool architecture for genetic algorithms Proceedings of the Eleventh conference on Congress on Evolutionary Computation, CEC’09, pp 1177–1184. IEEE Press, Piscataway, NJ, USA (2009)Google Scholar
  37. 37.
    Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009)CrossRefGoogle Scholar
  38. 38.
    Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: A case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)CrossRefGoogle Scholar
  39. 39.
    Sherry, D., Veeramachaneni, K., McDermott, J., O’Reilly, U.M.: Flex-gp: Genetic programming on the cloud. In: di Chio, C., et al. (eds.) Applications of Evolutionary Computation, LNCS, vol. 7248, pp 477–486. Springer, Berlin Heidelberg (2012)Google Scholar
  40. 40.
    Talukdar, S., Baerentzen, L., Gove, A., De Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. J. Heuristics 4(4), 295–321 (1998)CrossRefGoogle Scholar
  41. 41.
    Tanabe, R., Fukunaga, A.: Evaluation of a randomized parameter setting strategy for island-model evolutionary algorithms IEEE Congress on Evolutionary Computation, pp. 1263–1270. IEEE (2013)Google Scholar
  42. 42.
    Thierens, D.: Scalability problems of simple genetic algorithms. Evol. Comput. 7, 331–352 (1999)CrossRefGoogle Scholar
  43. 43.
    Trujillo, L., Valdez, M.G, de Vega, F.F., Merelo-Guervós, J.J.: Fireworks: Evolutionary art project based on EvoSpace-interactive IEEE Congress on Evolutionary Computation, pp. 2871–2878. IEEE (2013)Google Scholar
  44. 44.
    Varia, J.: Cloud architectures. White Paper of Amazon (2008)Google Scholar
  45. 45.
    Vecchiola, C., Kirley, M., Buyya, R.: Multi-objective problem solving with offspring on enterprise clouds. CoRR abs/0903.1386 (2009)Google Scholar
  46. 46.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl 1(1), 7–18 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mario García-Valdez
    • 1
  • Leonardo Trujillo
    • 2
    Email author
  • Juan-J Merelo
    • 3
  • Francisco Fernández de Vega
    • 4
  • Gustavo Olague
    • 5
  1. 1.Instituto Tecnológico de Tijuana, Calzada Tecnológico S/NTijuanaMexico
  2. 2.Departamento de Ingeniería Eléctrica y Electrónica, Posgrado en Ciencias de la Ingeniería, Instituto Tecnológico de Tijuana, Calzada Tecnológico S/NTijuanaMexico
  3. 3.Departamento de Arquitectura y Tecnología de Computadores, Centro de Investigación en Tecnologías de la Información y las ComunicacionesUniversidad de GranadaGranadaSpain
  4. 4.Grupo de Evolución ArtificialUniversidad de ExtremaduraExtremaduraSpain
  5. 5.Centro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico

Personalised recommendations