Advertisement

Journal of Grid Computing

, Volume 13, Issue 3, pp 351–374 | Cite as

Studying Fault-Tolerance in Island-Based Evolutionary and Multimemetic Algorithms

  • Rafael Nogueras
  • Carlos CottaEmail author
Article

Abstract

The use of parallel and distributed models of evolutionary algorithms (EAs) is widespread nowadays as a means to improve solution quality and reduce computational times when solving hard optimization problems. For this purpose, emergent computational environments such as P2P networks and desktop grids are offering a plethora of new opportunities but also bring new challenges: functioning on a computational network whose resources are volatile requires fault tolerance and resilience to churn. In this work we analyze these issues from the point of view of island-based EAs. We consider two EA variants, genetic and multimemetic algorithms, and analyze the impact on them of design decisions regarding the logical interconnection topology among islands and the particular fault-management policy used. To be precise, we have conducted an extensive empirical evaluation of five topologies (ring, von Neumann grid, hypercube and two kinds of scale-free networks) and four policies (including checkpoint creation and population reinitialization variants) on four benchmark problems, considering three different scenarios of increasing resource volatility. The statistical analysis of the results underlines the inherent fault-tolerance of these EAs and indicates that, while checkpointing is the most robust strategy and is superior in the most fragile topologies, a seemingly simpler guided reinitialization strategy provide statistically comparable results on the top-performing topologies, namely von Neumann grids and hypercubes.

Keywords

Genetic algorithms Memetic algorithm Island model Fault tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience (2005)Google Scholar
  2. 2.
    Alba, E., Luque, G.: Evaluation of parallel metaheuristics. In Luís Paquete, Marco Chiarandini, and Dario Basso, editors, Workshop on Empirical Methods for the Analysis of Algorithms – EMAA 2006, pp. 9–14, Reykjavik, Iceland (2006)Google Scholar
  3. 3.
    Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (Oct 2002)CrossRefGoogle Scholar
  4. 4.
    Alba, E., Troya, J.M.: Influence of the migration policy in parallel distributed GAs with structured and panmictic populations. Appl. Intell. 12(3), 163–181 (2000)CrossRefGoogle Scholar
  5. 5.
    Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Modern Phys. 74(1), 47–97 (Jan 2002)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In: 14th International Conference on Machine Learning, pages 30–38. Morgan Kaufmann (1997)Google Scholar
  7. 7.
    Barabási, A., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Erick, C.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, USA (2000)zbMATHGoogle Scholar
  9. 9.
    Cantú-Paz, E.: Migration policies, selection pressure, and parallel evolutionary algorithms. J. Heuristics 7(4), 311–334 (July 2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Deb, Kalyanmoy, Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L. D. (ed.) Second Workshop on Foundations of Genetic Algorithms, pp. 93–108, Morgan Kaufmann (1993)Google Scholar
  11. 11.
    Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)CrossRefGoogle Scholar
  12. 12.
    Gagné, C., Parizeau, M., Dubreuil, M.: Distributed beagle: An environment for parallel and distributed evolutionary computations. In: Proceedings of the 17th Annual International Symposium on High Performance Computing Systems and Applications (HPCS) 2003, pp. 201–208, Sherbrooke (QC), May 11-14 (2003)Google Scholar
  13. 13.
    Arenas, M.G., Collet, P., Eiben, A.E., Jelasity, M., Merelo Guervós, J.J., Paechter, B., Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms. In Juan J. Merelo Guervós, Panagiotis Adamidis, Hans-Georg Beyer, José Luis Fernández-Villacañas Martín, and Hans-Paul Schwefel, editors, PPSN, Vol. 2439 of Lecture Notes in Computer Science, pp. 665–675. Springer (2002)Google Scholar
  14. 14.
    David, E.: Goldberg, Kalyanmoy Deb, and Jeffrey Horn. Massive multimodality, deception, and genetic algorithms. In: Parallel Problem Solving from Nature – PPSN II, pages 37–48, Brussels. Elsevier, Belgium (1992)Google Scholar
  15. 15.
    Gorges-Schleuter, M.: ASPARAGOS: an asynchronous parallel genetic optimization strategy. In: Schaffer, J. D. (ed.) Third International Conference on Genetic Algorithms, pp. 422–427. Morgan Kaufmann, San Francisco, CA (1989)Google Scholar
  16. 16.
    Hart, W.E., Krasnogor, N., Smith, J.E.: Recent Advances in Memetic Algorithms, volume 166 of Studies in Fuzziness and Soft Computing, chapter Memetic Evolutionary Algorithms, pages 3–27. Springer-Verlag, Berlin Heidelberg (2005)Google Scholar
  17. 17.
    Hidalgo, J.I., Lanchares, J., Fernández de Vega, F., Lombraña, D.: Is the island model fault tolerant? In Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’07, pages 2737–2744. ACM, NY, USA (2007)Google Scholar
  18. 18.
    Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme algorithms for protein structure prediction. In J.J. Merelo et al., editors, Parallel Problem Solving From Nature VII, volume 2439 of Lecture Notes in Computer Science, pages 769–778. Springer-Verlag, Berlin (2002)Google Scholar
  20. 20.
    Laredo, J.L.J., Bouvry, P., González, D.L., Fernández, F., De Vega, M., Arenas, G., Guervós, J.J.M., Fernandes, C.M.: Designing robust volunteer-based evolutionary algorithms. Genet. Program Evolvable Mach. 15(3), 221–244 (2014)CrossRefGoogle Scholar
  21. 21.
    Laredo, J.L.J., Castillo, P.A., Mora, A.M., Guervós, J.J.M., Fernandes, C.M.: Resilience to churn of a peer-to-peer evolutionary algorithm. IJHPSA 1(4), 260–268 (2008)CrossRefGoogle Scholar
  22. 22.
    Larrañaga, P., Jose, A.L.: Estimation of Distribution Algorithms, volume 2 of Genetic Algorithms and Evolutionary Computation. Springer US (2002)Google Scholar
  23. 23.
    Lee, E.T., John, W.W.: Statistical Methods for Survival Data Analysis. Wiley Inc., Hoboken, NJ (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Liu, C., White, R.W., Dumais, S.: Understanding web browsing behaviors through weibull analysis of dwell time. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’10, pp. 379–386. ACM, NY, USA (2010)CrossRefGoogle Scholar
  25. 25.
    González, D.L., De Vega, F.F., Casanova, H.: Characterizing fault tolerance in genetic programming. Futur. Gener. Comput. Syst. 26(6), 847–856 (2010)CrossRefGoogle Scholar
  26. 26.
    González, D.L., Laredo, Juan L.J., De Vega, F.F., Guervós, J.J.M.: Characterizing fault-tolerance of genetic algorithms in desktop grid systems. In Peter Cowling and Peter Merz, editors, Evolutionary Computation in Combinatorial Optimization, volume 6022 of Lecture Notes in Computer Science, pages 131–142. Springer Berlin Heidelberg (2010)Google Scholar
  27. 27.
    González, D.L., Laredo, J.L.J., De Vega, F.F., Guervós, J.J.M.: Characterizing fault-tolerance in evolutionary algorithms. In Francisco Fernández de Vega, José Ignacio Hidalgo Pérez, and Juan Lanchares, editors, Parallel Architectures and Bioinspired Algorithms, volume 415 of Studies in Computational Intelligence, pages 77–99. Springer (2012)Google Scholar
  28. 28.
    Lozano, J.A., Larrañaga, P.: Iñaki Inza, and Endika Bengoetxea. Towards a New Evolutionary Computation, volume 192 of Studies in Fuzziness and Soft Computing. Springer Berlin Heidelberg (2006)Google Scholar
  29. 29.
    Melab, Nouredine, Mezmaz, Mohand: and El-Ghazali Talbi. Parallel hybrid multi-objective island model in peer-to-peer environment. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 6 - Volume 07, IPDPS ’05, pp. 190.2. IEEE Computer Society, Washington, USA (2005)Google Scholar
  30. 30.
    Milojičić, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., Xu, Z.: Peer-to-peer computing. Technical Report HPL-2002-57. Hewlett-Packard Labs (2002)Google Scholar
  31. 31.
    Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent Computation Program, Report, Vol. 826. California Institute of Technology, Pasadena, California, USA (1989)Google Scholar
  32. 32.
    Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms, volume 379 of Studies in Computational Intelligence. Springer-Verlag, Berlin Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Nogueras, R., Cotta, C.: Analyzing meme propagation in multimemetic algorithms, Initial investigations. In: Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, pp. 1013–1019. IEEE Press, Cracow, Poland (2013)Google Scholar
  34. 34.
    Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multimemetic algorithms. In T. Bartz-Beielstein, J. Branke, B. Filipič, and J. Smith, editors, Parallel Problem Solving From Nature – PPSN XIII, number 8672 in Lecture Notes in Computer Science, pp. 731–740. Springer, Berlin Heidelberg (2014)Google Scholar
  35. 35.
    Nogueras, R., Cotta, C.: A study on multimemetic estimation of distribution algorithms. In T. Bartz-Beielstein, J. Branke, B. Filipič, and J. Smith, editors, Parallel Problem Solving From Nature – PPSN XIII, number 8672 in Lecture Notes in Computer Science, pages 322–331. Springer, Berlin Heidelberg (2014)Google Scholar
  36. 36.
    Martin Pelikan, Sastry, Kumara, Cantú-Paz, E.: Scalable Optimization via Probabilistic Modeling, volume 33 of Studies in Computational Intelligence. Springer Berlin Heidelberg (2006)Google Scholar
  37. 37.
    Pettey, C.B., Leuze, M.R., Grefenstette, J.J.: A parallel genetic algorithm. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application, pages 155–161. L. Erlbaum Associates Inc, NJ, USA (1987)Google Scholar
  38. 38.
    Quade, D.: Using weighted rankings in the analysis of complete blocks with additive block effects. J. Am. Stat. Assoc. 74, 680–683 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Sarmenta, L. F.G.: Bayanihan: Web-based volunteer computing using java. In Yoshifumi Masunaga, Takuya Katayama, and Michiharu Tsukamoto, editors, Worldwide Computing and Its Applications – WWCA’98, volume 1368 of Lecture Notes in Computer Science, pages 444–461. Springer Berlin Heidelberg (1998)Google Scholar
  40. 40.
    Sato, Y., Sato, M.: Parallelization and fault-tolerance of evolutionary computation on many-core processors. In: IEEE Congress on Evolutionary Computation, pages 2602–2609. IEEE (2013)Google Scholar
  41. 41.
    Skolicki, Z., Jong, K.D.: The influence of migration sizes and intervals on island models. In: Genetic and Evolutionary Computation Conference 2005, pages 1295–1302, New York. ACM, NY (2005)CrossRefGoogle Scholar
  42. 42.
    Smith, J.E.: Self-adaptation in evolutionary algorithms for combinatorial optimisation. In Carlos Cotta, Marc Sevaux, and Kenneth Sörensen, editors, Adaptive and Multilevel Metaheuristics, volume 136 of Studies in Computational Intelligence, pages 31–57. Springer Berlin Heidelberg (2008)Google Scholar
  43. 43.
    Smith, J.E.: Self-adaptative and coevolving memetic algorithms. In Ferrante Neri, Carlos Cotta, and Pablo Moscato, editors, Handbook of Memetic Algorithms, volume 379 of Studies in Computational Intelligence, pages 167–188. Springer-Verlag, Berlin Heidelberg (2012)Google Scholar
  44. 44.
    Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC ’06, pages 189–202. ACM, NY, USA (2006)Google Scholar
  45. 45.
    Reiko, T.: Distributed genetic algorithms. In 3rd International Conference on Genetic Algorithms, pages 434–439. Morgan Kaufmann Publishers Inc, CA, USA (1989)Google Scholar
  46. 46.
    Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdependency. In Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature – PPSN V, volume 1498 of Lecture Notes in Computer Science, pages 97–106. Springer-Verlag, Berlin Heidelberg (1998)Google Scholar
  47. 47.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  48. 48.
    Waloddi, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18(3), 293–297 (1951)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department Lenguajes y Ciencias de la ComputaciónUniversidad de Málaga, ETSI Informática, Campus de TeatinosMálagaSpain

Personalised recommendations