Journal of Grid Computing

, Volume 13, Issue 1, pp 95–113 | Cite as

The Case for Workflow-Aware Storage:An Opportunity Study

  • L. B. Costa
  • H. Yang
  • E. Vairavanathan
  • A. Barros
  • K. Maheshwari
  • G. Fedak
  • D. Katz
  • M. Wilde
  • M. Ripeanu
  • S. Al-Kiswany


This article evaluates the potential gains a workflow-aware storage system can bring. Two observations make us believe such storage system is crucial to efficiently support workflow-based applications: First, workflows generate irregular and application-dependent data access patterns. These patterns render existing generic storage systems unable to harness all optimization opportunities as this often requires enabling conflicting optimizations or even conflicting design decisions at the storage system level. Second, most workflow runtime engines make suboptimal scheduling decisions as they lack the detailed data location information that is generally hidden by the storage system. This paper presents a limit study that evaluates the potential gains from building a workflow-aware storage system that supports per-file access optimizations and exposes data location. Our evaluation using synthetic benchmarks and real applications shows that a workflow-aware storage system can bring significant performance gains: up to 3x performance gains compared to a vanilla distributed storage system deployed on the same resources yet unaware of the possible file-level optimizations.


Large-scale storage system Workflow-aware storage system Workflow runtime engine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FUSE: Filesystem in Userspace. 2011.
  2. 2.
  3. 3.
    Laity, A.C., Anagnostou, N., Berriman, G.B., Good, J.C., et al.: Montage: an astronomical image mosaic service for the NVO. In: Proceedings of Astronomical Data Analysis Software and Systems (ADASS) (2004)Google Scholar
  4. 4.
    Chen, Y., Chen, W., Cobb, M.H., Zhao, Y.: PTMap A sequence alignment software for unrestricted, accurate, and full-spectrum identification of post-translational modification sites. Proceedings of the National Academy of Sciences of the USA, 2009. 106 (3).Google Scholar
  5. 5.
    Nemo-Cailliau, C., Glatard, T., Blay-Fornarino, M., Montagnat, J.: Merging overlapping orchestrations: an application to the Bronze Standard medical application. in IEEE International Conference on Services Computing. Salt Lake City, Utah, USA (2007)Google Scholar
  6. 6.
    Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason. Ultrason. Freq. Control 39 (2), 262–267 (1992)CrossRefGoogle Scholar
  7. 7.
    Raicu, I., Foster, I.T., Zhao, Y.: Many-Task Computing for Grids and Supercomputers. IEEE Work. Many-Task Comput. Grids Supercomputers (2008)Google Scholar
  8. 8.
    Foster, I., Hategan, M., Wozniak, J.M., Wilde, M., et al.: Swift: A language for distributed parallel scripting. J. Parallel Comput. (2011)Google Scholar
  9. 9.
    Deelman, E., Singh, G., Su, M.-H., Blythe, J., et al.: Pegasus: A framework for mapping complex scientific workflows onto distributed systems. J. Sci. Program. 13 (3), 219–237 (2005)Google Scholar
  10. 10.
  11. 11.
    Santos-Neto, E., Al-Kiswany, S., Andrade, N., Gopalakrishnan, S., et al: Beyond search and navigability: Custom metadata can enable cross-layer optimizations in storage systems. ACM/IEEE Int. Symp. High Perform. Distrib. Comput. (HPDC) - Hot Topics Track (2008)Google Scholar
  12. 12.
    Wozniak, J., Wilde, M.: Case studies in storage access by loosely coupled petascale applications. Petascale Data Storage Work. (2009)Google Scholar
  13. 13.
    Katz, D.S., Armstrong, T.G., Zhang, Z., Wilde, M., et al.: Many-Task computing and blue waters, in Technical Report CI-TR-13-0911. Computation Institute, University of Chicago & Argonne National Laboratory 2012. arXiv:1202.3943v1
  14. 14.
    Shibata, T., Choi, S.: File-access patterns of data-intensive workflow applications and their implications to distributed filesystems. Int. Symp. High Perform. Distrib. Comput. (HPDC) (2010)Google Scholar
  15. 15.
    Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., et al.: Characterization of scientific workflows. Work. Workflows Support Large-Scale Sci. (2008)Google Scholar
  16. 16.
    Yildiz, U., Guabtni, A., Ngu, A.H.H.: Towards scientific workflow patterns, in Workshop on Workflows in Support of Large-Scale Science. 2009Google Scholar
  17. 17.
    Bent, J., Thain, D., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., et al.: Explicit control in a batch-aware distributed file system. in Proceedings of the 1st USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04). 2004. San Francisco, California.Google Scholar
  18. 18.
    Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. IEEE Symp. Mass Storage Syst. Technol. (MSST) (2010)Google Scholar
  19. 19.
    Al-Kiswany, S., Gharaibeh, A., Ripeanu, M.: The case for versatile storage system. in workshop on hot topics in storage and file systems (HotStorage) 2009Google Scholar
  20. 20.
    Raicu, I., Zhao, Y., Foster, I., Szalay, A.: Accelerating Large-scale data exploration through data diffusion. Int. Workshop Data-Aware Distrib. Comput. (2008)Google Scholar
  21. 21.
    Chervenak, A., Deelman, E., Livny, M., et al.: Data placement for scientific applications in distributed environments in IEEE/ACM International Conference on Grid Computing. 2007Google Scholar
  22. 22.
    Alvarez, G.A., Borowsky, E., Go, S., Romer, T.H., et al.: Minerva: An automated resource provisioning tool for large-scale storage systems. ACM Trans. Comput. Syst. (TOCS) 19 (4) (2001)Google Scholar
  23. 23.
    Costa, L., Al-Kiswany, S., Barros, A., Yang, H., et al.: Predicting Intermediate Storage Performance for Workflow Applications, in Parallel Data Storage Workshop (PDSW) 2013: DenverGoogle Scholar
  24. 24.
    Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. in 19th ACM Symposium on Operating Systems Principles. 2003. Lake George, NY.Google Scholar
  25. 25.
    Gupta, K., Jain, R., Koltsidas, I., Pucha, H., et al.: GPFS-SNC: An enterprise storage framework for virtual-machine clouds IBM Journal of Research and Development 2011Google Scholar
  26. 26.
    Rosenblum, M., Ousterhout, J.K.: The Design and Implementation of a Log-Structured File System. ACM Transactions on Computer Systems (1992)Google Scholar
  27. 27.
    Mesnier, M.P., Akers, J.B.: Differentiated storage services. ACM SIGOPS Oper. Syst. Rev. 45 (1) (2011)Google Scholar
  28. 28.
    Chen, Z., Zhang, Y., Zhou, Y., H. Scott, et al: Empirical evaluation of multi-level buffer cache collaboration for storage systems. Int. Conf. Meas. Model. comput. syst. (SIGMETRICS) (2005)Google Scholar
  29. 29.
    Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D., et al.: Informed prefetching and caching. ACM Symp. Oper. Syst. Princ. (SOSP) (1995)Google Scholar
  30. 30.
    Fujimoto, K., Akaike, H., Okada, N., Miura, K., et al.: Power-aware Proactive Storage-tiering Management for gh-speed Tiered-storage Systems. Workshop Sustain. Inf. Technol. (2010)Google Scholar
  31. 31.
    Mandagere, N., Diehl, J., Du, D.: GreenStor: Application-Aided Energy-Efficient Storage. IEEE Confer. Mass Storage Syst. Technol. (MSST) (2007)Google Scholar
  32. 32.
    Fedak, G., He, H., Cappello, F.: BitDew: A programmable environment for large-scale data management and distribution. Int. Confer. High Perform. Netw. Comput. (Supercomputing) (2008)Google Scholar
  33. 33.
    Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., et al.: Falkon: A fast and Light-weight tasK executiON framework. Super Comput. (2007)Google Scholar
  34. 34.
    Raicu, I., Foster, I., Zhao, Y., Little, P., et al.: The Quest for Scalable Support of Data Intensive Workloads in Distributed Systems. Int. symp. High Perform. Distrib. Comput. (HPDC) (2009)Google Scholar
  35. 35.
    Zhang, Z., Katz, D., Ripean, M., Wilde, M., et al.: AME: An Anyscale Many-Task Computing Engine. in Workshop on Workflows in Support of Large-Scale Science (2011)Google Scholar
  36. 36.
    Zhang, Z., Katz, D.S., Wozniak, J M., Espinosa, A., et al.: Design and Analysis of Data Management in Scalable Parallel Scripting. Supercomput. (2012)Google Scholar
  37. 37.
    Berman, F., Chien, A., Cooper, K., Dongarra, J., et al.: The GrADS Project: Software support for high-level grid application development. Int. J. High Perform. Comput. Appl. 15 (4), 327–344 (2001)CrossRefGoogle Scholar
  38. 38.
    Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Beowulf cluster computing with Linux MIT Press Cambridge, MA, USA Ⓒ2002Google Scholar
  39. 39.
    gCUBE Framework (2014).
  40. 40.
    Glatard, T., Montagnat, J., Pennec, X., Emsellem, D., et al.: MOTEUR: A data-intensive service-based workflow manager. University of Nice, France (2006)Google Scholar
  41. 41.
  42. 42.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C., et al.: Pegasus: Mapping Scientific Workflows onto the Grid. Lect. Notes Comput. Sci. Grid Comput. 3165, 11–20Google Scholar
  43. 43.
    Hall, B.: Beej’s Guide to Network Programming. Jorgensen Publishing (2011)Google Scholar
  44. 44.
    Jai, R.: The art of computer systems performance analysis. Wiley-Interscience, New York, NY (1991)Google Scholar
  45. 45.
    Trivedi, K.S., ISBN-10: 0471333417 |ISBN-13: 978-0471333418 Probability and Statistics with Reliability, Queueing, and Computer Science Applications. 2 ed. 2001:. Wiley-InterscienceGoogle Scholar
  46. 46.
    Amazon simple storage service 2010.
  47. 47.
    Thain, D., Moretti, C., Jeffrey Hemmes: Chirp: A practical global filesystem for cluster and grid computing. J. Grid Comput. 7 (1), 51–72 (2009)CrossRefGoogle Scholar
  48. 48.
    Altschul, S.F., Gish, W., Miller, W., Myers, E., et al.: Basic local alignment search tool. Molecular Biology 215, 403–410 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • L. B. Costa
    • 1
  • H. Yang
    • 1
  • E. Vairavanathan
    • 1
  • A. Barros
    • 2
  • K. Maheshwari
    • 3
  • G. Fedak
    • 4
  • D. Katz
    • 3
  • M. Wilde
    • 3
  • M. Ripeanu
    • 1
  • S. Al-Kiswany
    • 1
  1. 1.Electrical and Computer EngineeringThe University of British ColumbiaVancouverCanada
  2. 2.Universidade Federal de Campina GrandeCampina GrandeBrazil
  3. 3.University of Chicago & Argonne National LaboratoryLemontUSA
  4. 4.INRIAValbonneFrance

Personalised recommendations