Journal of Grid Computing

, Volume 11, Issue 3, pp 481–503 | Cite as

Workflows for Heliophysics

  • Anja Le BlancEmail author
  • John Brooke
  • Donal Fellows
  • Marco Soldati
  • David Pérez-Suárez
  • Alessandro Marassi
  • Andrej Santin


In this paper we describe how we have introduced workflows into the working practices of a community for whom the concept of workflows is very new, namely the heliophysics community. Heliophysics is a branch of astrophysics which studies the Sun and the interactions between the Sun and the planets, by tracking solar events as they travel throughout the Solar system. Heliophysics produces two major challenges for workflow technology. Firstly it is a systems science where research is currently developed by many different communities who need reliable data models and metadata to be able to work together. Thus it has major challenges in the semantics of workflows. Secondly, the problem of time is critical in heliophysics; the workflows must take account of the propagation of events outwards from the sun. They have to address the four dimensional nature of space and time in terms of the indexing of data. We discuss how we have built an environment for Heliophysics workflows building on and extending the Taverna workflow system and utilising the myExperiment site for sharing workflows. We also describe how we have integrated the workflows into the existing practices of the communities involved in Heliophysics by developing a web portal which can hide the technical details from the users, who can concentrate on the data from their scientific point of view rather than on the methods used to integrate and process the data. This work has been developed in the EU Framework 7 project HELIO, and is being disseminated to the worldwide Heliophysics community, since Heliophysics requires integration of effort on a global scale.


Workflow Taverna myExperiment Taverna Server Portal integration Heliophysics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szalay, A., Gray, J.: The world-wide telescope. Science 293(5537), 2037–2038 (2001)CrossRefGoogle Scholar
  2. 2.
    Hatziminaoglou, E.: Virtual observatory: science capabilities and scientific results. In: Tsinganos, K., Hatzidimitriou, D., Matsakos, T. (eds.) 9th International Conference of the Hellenic Astronomical Society. Astronomical Society of the Pacific Conference Series, vol. 424, pp. 411 (2010)Google Scholar
  3. 3.
    Tedds, J.A.: Science with the virtual observatory: the AstroGrid VO desktop. ArXiv:0906.1535 e-prints (2009)
  4. 4.
    Dalla, S., Walton, N.A.: Astrogrid: the Uk’s virtual observatory and its solar physics capabilities. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) SOHO 15 Coronal Heating. ESA Special Publication, vol. 575, p. 577 (2004)Google Scholar
  5. 5.
    Bentley, R., Csillaghy, A., Aboudarham, J., Jacquey, C., Hapgood, M.A., Bocchialini, K., Messerotti, M., Brooke, J., Gallagher, P., Fox, P., et al.: HELIO: the heliophysics integrated observatory. Adv. Space Res. 47(12), 2235–2239 (2011)CrossRefGoogle Scholar
  6. 6.
    Martınez, A.P., Derriere, S., Gray, N., Mann, R., McDowell, J., Mc Glynn, T., Ochsenbein, F., Osuna, P., Rixon, G., Williams, R.: The UCD1+ controlled vocabulary. IVOA Semantics WG Recommendation (2005)Google Scholar
  7. 7.
    Ochsenbein, F., Williams, R., Davenhall, C., Durand, D., Fernique, P., Hanisch, R., Giaretta, D., McGlynn, T., Szalay, A., Wicenec, A.: VOTable: tabular data for the virtual observatory. In: Quinn, P., Górski, K. (eds.) Toward an International Virtual Observatory. ESO Astrophysics Symposia, vol. 30, pp. 118–123. Springer, Berlin / Heidelberg (2004). doi: 10.1007/10857598_18
  8. 8.
    Stern, B.A.: Interactive data language. In: Proceedings of SPACE 2000: The Seventh International Conference and Exposition on Engineering, Construction, Operations and Business in Space, p. 1011. American Society of Civil Engineers, 1801 Alexander Bell Drive, Reston, VA, 20191-4400, USA (2000)Google Scholar
  9. 9.
    Bentley, R., CASSIS team: Coordination action for the integration of solar system infrastructures and science. Project web page. (2010). Cited 13 April 2012
  10. 10.
    Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F., Thatte, S., Winer, D.: Simple object access protocol (SOAP) 1.1. (2000)
  11. 11.
    Fielding, R.: Representational state transfer: an architectural style for distributed hypermedia interaction. PhD thesis, PhD Thesis, University of California, Irvine (2000)Google Scholar
  12. 12.
    Bose, P., Hurlburt, N., Somani, A., Fox, P.: Collaborative virtual sensorweb infrastructure: architecture and implementation. Online at In NASA Science Technology Conference (2007)
  13. 13.
    Unkown: IVOA table access protocol parameterized query language. Online at (2009)
  14. 14.
    Melton, J., Simon, A.R.: Understanding the New SQL: A Complete Guide. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers (1993)Google Scholar
  15. 15.
    Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: BPEL4WS, Business process execution language for web services version 1.1. IBM. (2003)
  16. 16.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.H., Vahi, K., Livny, M.: Pegasus: mapping scientific workflows onto the Grid. In: Grid Computing, pp. 131–140. Springer (2004)Google Scholar
  17. 17.
    Breuer, D., Erwin, D., Mallmann, D., Menday, R., Romberg, M., Sander, V., Schuller, B., Wieder, P.: Scientific computing with UNICORE. In: NIC Symposium, vol. 20, pp. 429–440 (2004)Google Scholar
  18. 18.
    Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: the Konstanz information miner. In: Data Analysis, Machine Learning and Applications, pp. 319–326 (2008)Google Scholar
  19. 19.
    Goecks, J., Nekrutenko, A., Taylor, J., Team, T.G.: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11(8), R86 (2010)CrossRefGoogle Scholar
  20. 20.
    Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible system for design and execution of scientific workflows. In: Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004, pp. 423–424 (2004)Google Scholar
  21. 21.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Res. 34(suppl 2), W729 (2006)CrossRefGoogle Scholar
  22. 22.
    Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632 (1981)Google Scholar
  23. 23.
    Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D.R., Palma, R., Bechhofer, S., Garcia Cuesta, E., Gomez-Perez, J.M., Klyne, G., Page, K., Roos, M., Ruiz, J.E., Soiland-Reyes, S., Verdes-Montenegro, L., De Roure, D., Goble, C.: Workflow-centric research objects: a first class citizen in the scholarly discourse. In: Proc. Workshop on the Semantic Publishing (SePublica), pp. 1–12 (2012)Google Scholar
  24. 24.
    Schaaff, A., Le Petit, F., Prugniel, P., Slezak, E., Surace, C.: Workflow working group in the frame of asov. Online at (2006)
  25. 25.
    Ohishi, M.: International virtual observatory alliance. Highlights Astron. 14, 528–529 (2006)Google Scholar
  26. 26.
    Schaaff, A., Ruiz, J.E., et al.: Scientific workflows in the vo. Online at (2011)
  27. 27.
    Freeland, S.L., Handy, B.N.: Data analysis with the solarsoft system. Sol. Phys. 182, 497–500 (1998). doi: 10.1023/A:1005038224881 CrossRefGoogle Scholar
  28. 28.
    Hightower, R.: BeanShell & DynamicJava: Java scripting with Java. JAVA developer’s journal. Online at (2000). Retrieved April 2012
  29. 29.
    Le Blanc, A.: Available instruments through DPAS which are not part of ICS instruments table. In: myExperiment Repository. (2012)
  30. 30.
    Le Blanc, A.: Check in UOC which instruments were observing at a given time period and place. In: myExperiment Repository. (2012)
  31. 31.
    Pérez-Suárez, D., Maloney, S.A., Higgins, P.A., Bloomfield, D.S., Gallagher, P.T., Pierantoni, G., Bonnin, X., Cecconi, B., Alberti, V., Bocchialini, K., Dierckxsens, M., Opitz, A., Blanc, A., Aboudarham, J., Bentley, R.B., Brooke, J., Coghlan, B., Csillaghy, A., Jacquey, C., Lavraud, B., Messerotti, M.: Studying SunPlanet connections using the heliophysics integrated observatory (HELIO). Sol. Phys. 280(2), 603–621 (2012)CrossRefGoogle Scholar
  32. 32.
    Le Blanc, A.: Co-rotating interaction regions back wards propagation. In: myExperiment Repository. (2012)
  33. 33.
    Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Ap. J. 128, 664 (1958)CrossRefGoogle Scholar
  34. 34.
    Le Blanc, A., Miteva, R.: Associate sep events at earth with flare, cme and radio events on the sun. In: myExperiment Repository. (2012)
  35. 35.
    Paskin, N.: Digital Object Identifier (DOI®), chapter 114, pp. 1–12. Taylor & Francis (2011)Google Scholar
  36. 36.
    Berners-Lee, T., Fielding, R., Masinter, L.: Uniform resource identifiers (URI): generic syntax. In: Obsoleted by RFC 3986, updated by RFC 2732. Internet Engineering Task Force, IETF, vol. 2396. (1998)
  37. 37.
    Goble, C.A., De Roure, D.C.: myExperiment: social networking for workflow-using e-scientists. In: Proceedings of the 2nd Workshop on Workflows in Support of Large-Scale Science, pp. 1–2. ACM (2007)Google Scholar
  38. 38.
    Gregorio, J., de hOra, B.: RFC: 5023 the atom publishing protocol. In: IETF Requests For Comments (2007)Google Scholar
  39. 39.
    Saint-Andre, P.: RFC 6120: extensible messaging and presence protocol (XMPP): core. In: IETF Requests For Comments (2004)Google Scholar
  40. 40.
    Perry, J.S., Denn, R.: Java Management Extensions. O’Reilly & Associates, Inc. (2002)Google Scholar
  41. 41.
    Vicario, S., Hardisty, A., Haitas, N.: Biovel: biodiversity virtual e-laboratory. EMBnet.journal 17(2), 5 (2011)Google Scholar
  42. 42.
    Murty, J.: Programming Amazon Web Services: S3, EC2, SQS, FPS, and SimpleDB. O’Reilly Media, Incorporated (2008)Google Scholar
  43. 43.
    Balani, N., Hathi, R.: Apache CXF Web Service Development. Packt Publishing (2009)Google Scholar
  44. 44.
    Johnson, R., Hoeller, J., Arendsen, A., Risberg, T., Kopylenko, D.: Professional Java Development with the Spring Framework. Wrox Press Ltd. (2005)Google Scholar
  45. 45.
    Chinnici, R., Hadley, M.: JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0. Java Community Process (2006)Google Scholar
  46. 46.
    Hadley, M., Sandoz, P.: JSR 311: JAX-RS: Java API for RESTful Web Services (version 1.1). Java Community Process (2009)Google Scholar
  47. 47.
    Napier, R.A.: Secure automation: achieving least privilege with SSH, Sudo and Setuid. In: 18th Large Installation System Administration Conference, pp. 203–212 (2004)Google Scholar
  48. 48.
    Maassen, J., van Nieuwpoort, R., Veldema, R., Bal, H.E., Plaat, A.: An efficient implementation of Java’s remote method invocation. SIGPLAN Not. 34(8), 173–182 (1999)Google Scholar
  49. 49.
    The Legion of the Bouncy Castle: Bouncy Castle Crypto APIs for Java. Online at (2007–2012)
  50. 50.
    Pierantoni, G., Kenny, E., Coghlan, B.: The architecture of helio. In: Bubak, M., Turala, M., Wiatr, K. (eds.) CGW’10 Proceedings. Volume CGW’10 Proceedings of Krakow Grid Workshop Proceedings, pp. 84–91. ACC CYFRONET AGH (2011)Google Scholar
  51. 51.
    Pierantoni, G., Kenny, E., Coghlan, B.: The use of standards in helio. Comp. Sci. 13(2), 93–102 (2012)CrossRefGoogle Scholar
  52. 52.
    Sroka, J., Hidders, J., Missier, P., Goble, C.: A formal semantics for the Taverna 2 workflow model. J. Comput. Syst. Sci. 76(6), 490–508 (2010)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Driver, M., Valdes, R., Phifer, G.: Rich Internet Applications are the Next Evolution of the Web. Gartner Research (2005)Google Scholar
  54. 54.
    Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly (1998)Google Scholar
  55. 55.
    Garrett, J.J.: Ajax: a new approach to web applications. Blog posting, available online at (2005). Downloaded June 2011
  56. 56.
    Bibeault, B., Katz, Y.: jQuery in Action. Manning Publications Co. (2008)Google Scholar
  57. 57.
    Spielman, S.: The Struts Framework: Practical Guide for Java Programmers. Morgan Kaufmann Pub (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anja Le Blanc
    • 1
    Email author
  • John Brooke
    • 1
  • Donal Fellows
    • 1
  • Marco Soldati
    • 2
  • David Pérez-Suárez
    • 3
    • 5
  • Alessandro Marassi
    • 4
  • Andrej Santin
    • 4
  1. 1.University of ManchesterManchesterUK
  2. 2.Fachhochschule Nordwestschweiz, Institute of 4D TechnologiesWindischSwitzerland
  3. 3.Trinity College Dublin, College GreenDublin 2Ireland
  4. 4.INAF-Astronomical Observatory of TriesteTriesteItaly
  5. 5.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations