WeNMR: Structural Biology on the Grid

Abstract

The WeNMR (http://www.wenmr.eu) project is a European Union funded international effort to streamline and automate analysis of Nuclear Magnetic Resonance (NMR) and Small Angle X-Ray scattering (SAXS) imaging data for atomic and near-atomic resolution molecular structures. Conventional calculation of structure requires the use of various software packages, considerable user expertise and ample computational resources. To facilitate the use of NMR spectroscopy and SAXS in life sciences the WeNMR consortium has established standard computational workflows and services through easy-to-use web interfaces, while still retaining sufficient flexibility to handle more specific requests. Thus far, a number of programs often used in structural biology have been made available through application portals. The implementation of these services, in particular the distribution of calculations to a Grid computing infrastructure, involves a novel mechanism for submission and handling of jobs that is independent of the type of job being run. With over 450 registered users (September 2012), WeNMR is currently the largest Virtual Organization (VO) in life sciences. With its large and worldwide user community, WeNMR has become the first Virtual Research Community officially recognized by the European Grid Infrastructure (EGI).

References

  1. 1.

    Bloch, F.: Nuclear induction. Phys. Rev. 70, 460 (1946)

    Article  Google Scholar 

  2. 2.

    Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37 (1946)

    Article  Google Scholar 

  3. 3.

    Bonvin, A.M.J.J., Rosato, A., Wassenaar, T.A.: The eNMR platform for structural biology. J. Struct. Funct. Genomics 11, 1–8 (2010)

    Article  Google Scholar 

  4. 4.

    Feigin, L.A., Svergun, D.I.: Structure Analysis by Small-angle X-ray and Neutron Scattering. Plenum Press, New York (1987)

    Google Scholar 

  5. 5.

    Mertens, H.D.T., Svergun, D.I.: Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J. Struct. Biol. 172, 128–141 (2010)

    Article  Google Scholar 

  6. 6.

    Morgan, H.P., et al.: Structural basis for engagement by complement factor H of C3b on a self surface. Nat. Struct. Mol. Biol. 18, 463–470 (2011)

    Article  Google Scholar 

  7. 7.

    Prischi, F., et al.: Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nat. Commun. 1, 95 (2010)

    Article  Google Scholar 

  8. 8.

    Gabel, F., et al.: A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints. J. Biomol. NMR 41, 199–208 (2008)

    Article  Google Scholar 

  9. 9.

    Grishaev, A., Tugarinov, V., Kay, L.E., Trewhella, J., Bax, A.: Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints. J. Biomol. NMR 40, 95–106 (2008)

    Article  Google Scholar 

  10. 10.

    Grishaev, A., Wu, J., Trewhella, J., Bax, A.: Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. J. Am. Chem. Soc. 127, 16621–16628 (2005)

    Article  Google Scholar 

  11. 11.

    Bernado, P., Svergun, D.I.: Structural insights into intrinsically disordered proteins by small-angle X-ray scattering. In: Uversky, V.N., Longhi, S. (eds.) Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation, pp. 451–476 Wiley, Hoboken (2010)

    Chapter  Google Scholar 

  12. 12.

    Ferrari, T., Gaido, L.: Resources and services of the EGEE production infrastructure. J. Grid Computing 9, 119–133 (2011)

    Article  Google Scholar 

  13. 13.

    Avellino, G., et al.: The dataGrid workload management system: challenges and results. J. Grid Computing 2, 353–367 (2004)

    Article  Google Scholar 

  14. 14.

    Wilkins-Diehr, N.: Special issue: science gateways—common community interfaces to Grid resources: editorials. Concurr. Comput.: Pract. Exp. 19, 743–749 (2007)

    Article  Google Scholar 

  15. 15.

    Fargette, M., Barbera, R., Rotondo, R.: A simplified access to Grid resources by science gateways. In: International Symposium on Grids and Clouds and the Open Grid Forum. Taipei (2011)

  16. 16.

    Farkas, Z., Kacsuk, P.: P-GRADE portal: a generic workflow system to support user communities. Future Gener. Comput. Syst. 27, 454–465 (2011)

    Article  Google Scholar 

  17. 17.

    Kacsuk, P.: P-GRADE portal family for Grid infrastructures. Concurr. Comput.: Pract. Exp. 23, 235–245 (2011)

    Article  Google Scholar 

  18. 18.

    Barbera, R., Falzone, A., Ardizzone, V., Scardaci, D.: The GENIUS Grid portal: its architecture, improvements of features, and new implementations about authentication and authorization. In: Proceedings of the 16th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 279–283. IEEE Computer Society, (2007)

  19. 19.

    Zhang, C., Kelley, I., Allen, G.: Grid portal solutions: a comparison of GridPortlets and OGCE. Concurr. Comput.: Pract. Exp. 19, 1739–1748 (2007)

    Article  Google Scholar 

  20. 20.

    Szejnfeld, D., et al.: Vine toolkit—towards portal based production solutions for scientific and engineering communities with Grid-enabled resources support. Scalable Comput.: Pract. Exp. 11, 161–172 (2010)

    Google Scholar 

  21. 21.

    Hull, D., et al.: Taverna: a tool for building and running workflows of services. Nucleic Acids Res. 34, W729–W732 (2006)

    Article  Google Scholar 

  22. 22.

    De Vries, S.J., et al.: HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69, 726–733 (2007)

    Article  Google Scholar 

  23. 23.

    Dominguez, C., Boelens, R., Bonvin, A.M.J.J.: HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003)

    Article  Google Scholar 

  24. 24.

    Schwieters, C.D., Kuszewski, J.J., Tjandra, N., Clore, G.M.: The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003)

    Article  Google Scholar 

  25. 25.

    Güntert, P., Mumenthaler, C., Wüthrich, K.: Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997)

    Article  Google Scholar 

  26. 26.

    Herrmann, T., Güntert, P., Wüthrich, K.: Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002)

    Article  Google Scholar 

  27. 27.

    Shen, Y., et al.: Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA. 105, 4685–4690 (2008)

    Article  Google Scholar 

  28. 28.

    Shen, Y., Vernon, R., Baker, D., Bax, A.: De novo protein structure generation from incomplete chemical shift assignments. J. Biomol. NMR 43, 63–78 (2009)

    Article  Google Scholar 

  29. 29.

    Case, D.A., et al.: The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)

    Article  Google Scholar 

  30. 30.

    Van Der Spoel, D., et al.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  31. 31.

    Vranken, W.F., et al.: The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005)

    Article  Google Scholar 

  32. 32.

    Jung, Y.S., Zweckstetter, M.: Mars—robust automatic backbone assignment of proteins. J. Biomol. NMR 30, 11–23 (2004)

    Article  Google Scholar 

  33. 33.

    Shen, Y., Delaglio, F., Cornilescu, G., Bax, A.: TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009)

    Article  Google Scholar 

  34. 34.

    Jaravine, V.A., Zhuravleva, A.V., Permi, P., Ibraghimov, I., Orekhov, V.Y.: Hyperdimensional NMR spectroscopy with nonlinear sampling. J. Am. Chem. Soc. 130, 3927–3936 (2008)

    Article  Google Scholar 

  35. 35.

    Petoukhov, M.V., Konarev, P.V., Kikhney, A.G., Svergun, D.I.: ATSAS 2.1—towards automated and web-supported small-angle scattering data analysis. J. Appl. Crystallogr. 40, S223–S228 (2007)

    Article  Google Scholar 

  36. 36.

    Fiorito, F., Herrmann, T., Damberger, F.F., Wüthrich, K.: Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [ 1H, 1H]-NOESY. J. Biomol. NMR 42, 23–33 (2008)

    Article  Google Scholar 

  37. 37.

    Volk, J., Herrmann, T., Wüthrich, K.: Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J. Biomol. NMR 41, 127–138 (2008)

    Article  Google Scholar 

  38. 38.

    Lensink, M.F., Mendez, R., Wodak, S.J.: Docking and scoring protein complexes: CAPRI 3rd edition. Proteins 69, 704–718 (2007)

    Article  Google Scholar 

  39. 39.

    Mendez, R., Leplae, R., Lensink, M.F., Wodak, S.J.: Assessment of CAPRI predictions in rounds 3–5 shows progress in docking procedures. Proteins 60, 150–169 (2005)

    Article  Google Scholar 

  40. 40.

    van Dijk, A.D., et al.: Data-driven docking: HADDOCK’s adventures in CAPRI. Proteins 60, 232–238 (2005)

    Article  Google Scholar 

  41. 41.

    Schwieters, C.D., Kuszewski, J.J., Clore, G.M.: Using Xplor-NIH for NMR molecular structure determination. Prog. NMR Spectrosc. 48, 47–62 (2006)

    Article  Google Scholar 

  42. 42.

    Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  43. 43.

    Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004)

    Article  Google Scholar 

  44. 44.

    Shen, Y., Bax, A.: Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J. Biomol. NMR 38, 289–302 (2007)

    Article  Google Scholar 

  45. 45.

    Cornilescu, G., Delaglio, F., Bax, A.: Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999)

    Article  Google Scholar 

  46. 46.

    McGuffin, L.J., Bryson, K., Jones, D.T.: The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000)

    Article  Google Scholar 

  47. 47.

    Wang, Y.J., Jardetzky, O.: Investigation of the neighboring residue effects on protein chemical shifts. J. Am. Chem. Soc. 124, 14075–14084 (2002)

    Article  Google Scholar 

  48. 48.

    Berjanskii, M.V., Wishart, D.S.: A simple method to predict protein flexibility using secondary chemical shifts. J. Am. Chem. Soc. 127, 14970–14971 (2005)

    Article  Google Scholar 

  49. 49.

    Ulrich, E.L., et al.: BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008)

    Article  Google Scholar 

  50. 50.

    Fogh, R.H., et al.: MEMOPS: data modelling and automatic code generation. J. Integr. Bioinform. 7, 123 (2010)

    Google Scholar 

  51. 51.

    Bertini, I., Case, D.A., Ferella, L., Giachetti, A., Rosato, A.: A Grid-enabled web portal for NMR structure refinement with AMBER. Bioinformatics 27, 2384–2390 (2011)

    Article  Google Scholar 

  52. 52.

    Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001)

    Google Scholar 

  53. 53.

    Oostenbrink, C., Villa, A., Mark, A.E., Van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676 (2004)

    Article  Google Scholar 

  54. 54.

    Schuler, L.D., Daura, X., Van Gunsteren, W.F.: An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 22, 1205–1218 (2001)

    Article  Google Scholar 

  55. 55.

    Scott, W.R.P., et al.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607 (1999)

    Article  Google Scholar 

  56. 56.

    van Gunsteren, W.F., et al.: Biomolecular Simulation: The Gromos 96 Manual and User Guide. BIOMOS BV, Zürich, Groningen (1996)

  57. 57.

    Ponder, J.W., Case, D.A.: Force fields for protein simulations. Adv. Protein Chem. 66, 27–85 (2003)

    Article  Google Scholar 

  58. 58.

    Brooks, B.R., et al.: Charmm—a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)

    Article  Google Scholar 

  59. 59.

    Jorgensen, W.L., Maxwell, D.S., TiradoRives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  Google Scholar 

  60. 60.

    Van Dijk, M., Wassenaar, T., Bonvin, A.M.J.J.: A flexible, Grid-enabled web portal for GROMACS molecular dynamics simulations. J. Chem. Theory Comput. (2012). doi:10.1021/ct300102d

    Google Scholar 

  61. 61.

    Villa, A., Fan, H., Wassenaar, T., Mark, A.E.: How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field? J. Phys. Chem. B 111, 6015–6025 (2007)

    Article  Google Scholar 

  62. 62.

    Wassenaar, T.A., Mark, A.E.: The effect of box shape on the dynamic properties of proteins simulated under periodic boundary conditions. J. Comput. Chem. 27, 316–325 (2006)

    Article  Google Scholar 

  63. 63.

    De Vries, S.J., van Dijk, M., Bonvin, A.M.J.J.: The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883–897 (2010)

    Article  Google Scholar 

  64. 64.

    Herrmann, T., Güntert, P., Wüthrich, K.: Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171–189 (2002)

    Article  Google Scholar 

  65. 65.

    Doreleijers, J.F., Sousa da Silva, A.W., Krieger, E., Nabuurs, S.B., Spronk, C.A.E.M., Stevens, T.J., Vranken, W.F., Vriend, G., Vuister, G.W.: CING: an integrated residue-based structure validation program suite. J. Biomol. NMR 54, 267–283 (2012)

    Article  Google Scholar 

  66. 66.

    Doreleijers, J.F., et al.: NRG-CING: integrated validation reports of remediated experimental biomolecular NMR data and coordinates in wwPDB. Nucleic Acids Res. (2011). doi:10.1093/nar/gkr1134

    Google Scholar 

  67. 67.

    Franke, D., Svergun, D.I.: DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42, 342–346 (2009)

    Article  Google Scholar 

  68. 68.

    Volkov, V.V., Svergun, D.I.: Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003)

    Article  Google Scholar 

  69. 69.

    Svergun, D.I.: Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999)

    Article  Google Scholar 

  70. 70.

    Svergun, D.I., Petoukhov, M.V., Koch, M.H.: Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001)

    Article  Google Scholar 

  71. 71.

    Bradley, D., Sfiligoi, I., Padhi, S., Frey, J., Tannenbaum, T.: Scalability and interoperability within glideinWMS. J. Phys.: Conf. Ser. 219, 062036 (2010)

    Article  Google Scholar 

  72. 72.

    Verlato, M.: Extending WeNMR e-Infrastructure outside Europe. In: EGI Community Forum 2012/EMI Second Technical Conference, Munich (2012)

  73. 73.

    Bertini, I., et al.: Conformational space of flexible biological macromolecules from average data. J. Am. Chem. Soc. 132, 13553–13558 (2010)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. J. J. Bonvin.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wassenaar, T.A., van Dijk, M., Loureiro-Ferreira, N. et al. WeNMR: Structural Biology on the Grid. J Grid Computing 10, 743–767 (2012). https://doi.org/10.1007/s10723-012-9246-z

Download citation

Keywords

  • Web portals
  • Nuclear magnetic resonance
  • Small angle x-ray scattering
  • Structural biology
  • Proteins
  • Virtual research community