WeNMR: Structural Biology on the Grid
- 1.8k Downloads
- 86 Citations
Abstract
The WeNMR (http://www.wenmr.eu) project is a European Union funded international effort to streamline and automate analysis of Nuclear Magnetic Resonance (NMR) and Small Angle X-Ray scattering (SAXS) imaging data for atomic and near-atomic resolution molecular structures. Conventional calculation of structure requires the use of various software packages, considerable user expertise and ample computational resources. To facilitate the use of NMR spectroscopy and SAXS in life sciences the WeNMR consortium has established standard computational workflows and services through easy-to-use web interfaces, while still retaining sufficient flexibility to handle more specific requests. Thus far, a number of programs often used in structural biology have been made available through application portals. The implementation of these services, in particular the distribution of calculations to a Grid computing infrastructure, involves a novel mechanism for submission and handling of jobs that is independent of the type of job being run. With over 450 registered users (September 2012), WeNMR is currently the largest Virtual Organization (VO) in life sciences. With its large and worldwide user community, WeNMR has become the first Virtual Research Community officially recognized by the European Grid Infrastructure (EGI).
Keywords
Web portals Nuclear magnetic resonance Small angle x-ray scattering Structural biology Proteins Virtual research communityReferences
- 1.Bloch, F.: Nuclear induction. Phys. Rev. 70, 460 (1946)CrossRefGoogle Scholar
- 2.Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37 (1946)CrossRefGoogle Scholar
- 3.Bonvin, A.M.J.J., Rosato, A., Wassenaar, T.A.: The eNMR platform for structural biology. J. Struct. Funct. Genomics 11, 1–8 (2010)CrossRefGoogle Scholar
- 4.Feigin, L.A., Svergun, D.I.: Structure Analysis by Small-angle X-ray and Neutron Scattering. Plenum Press, New York (1987)Google Scholar
- 5.Mertens, H.D.T., Svergun, D.I.: Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J. Struct. Biol. 172, 128–141 (2010)CrossRefGoogle Scholar
- 6.Morgan, H.P., et al.: Structural basis for engagement by complement factor H of C3b on a self surface. Nat. Struct. Mol. Biol. 18, 463–470 (2011)CrossRefGoogle Scholar
- 7.Prischi, F., et al.: Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nat. Commun. 1, 95 (2010)CrossRefGoogle Scholar
- 8.Gabel, F., et al.: A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints. J. Biomol. NMR 41, 199–208 (2008)CrossRefGoogle Scholar
- 9.Grishaev, A., Tugarinov, V., Kay, L.E., Trewhella, J., Bax, A.: Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints. J. Biomol. NMR 40, 95–106 (2008)CrossRefGoogle Scholar
- 10.Grishaev, A., Wu, J., Trewhella, J., Bax, A.: Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. J. Am. Chem. Soc. 127, 16621–16628 (2005)CrossRefGoogle Scholar
- 11.Bernado, P., Svergun, D.I.: Structural insights into intrinsically disordered proteins by small-angle X-ray scattering. In: Uversky, V.N., Longhi, S. (eds.) Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation, pp. 451–476 Wiley, Hoboken (2010)CrossRefGoogle Scholar
- 12.Ferrari, T., Gaido, L.: Resources and services of the EGEE production infrastructure. J. Grid Computing 9, 119–133 (2011)CrossRefGoogle Scholar
- 13.Avellino, G., et al.: The dataGrid workload management system: challenges and results. J. Grid Computing 2, 353–367 (2004)CrossRefGoogle Scholar
- 14.Wilkins-Diehr, N.: Special issue: science gateways—common community interfaces to Grid resources: editorials. Concurr. Comput.: Pract. Exp. 19, 743–749 (2007)CrossRefGoogle Scholar
- 15.Fargette, M., Barbera, R., Rotondo, R.: A simplified access to Grid resources by science gateways. In: International Symposium on Grids and Clouds and the Open Grid Forum. Taipei (2011)Google Scholar
- 16.Farkas, Z., Kacsuk, P.: P-GRADE portal: a generic workflow system to support user communities. Future Gener. Comput. Syst. 27, 454–465 (2011)CrossRefGoogle Scholar
- 17.Kacsuk, P.: P-GRADE portal family for Grid infrastructures. Concurr. Comput.: Pract. Exp. 23, 235–245 (2011)CrossRefGoogle Scholar
- 18.Barbera, R., Falzone, A., Ardizzone, V., Scardaci, D.: The GENIUS Grid portal: its architecture, improvements of features, and new implementations about authentication and authorization. In: Proceedings of the 16th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 279–283. IEEE Computer Society, (2007)Google Scholar
- 19.Zhang, C., Kelley, I., Allen, G.: Grid portal solutions: a comparison of GridPortlets and OGCE. Concurr. Comput.: Pract. Exp. 19, 1739–1748 (2007)CrossRefGoogle Scholar
- 20.Szejnfeld, D., et al.: Vine toolkit—towards portal based production solutions for scientific and engineering communities with Grid-enabled resources support. Scalable Comput.: Pract. Exp. 11, 161–172 (2010)Google Scholar
- 21.Hull, D., et al.: Taverna: a tool for building and running workflows of services. Nucleic Acids Res. 34, W729–W732 (2006)CrossRefGoogle Scholar
- 22.De Vries, S.J., et al.: HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69, 726–733 (2007)CrossRefGoogle Scholar
- 23.Dominguez, C., Boelens, R., Bonvin, A.M.J.J.: HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003)CrossRefGoogle Scholar
- 24.Schwieters, C.D., Kuszewski, J.J., Tjandra, N., Clore, G.M.: The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003)CrossRefGoogle Scholar
- 25.Güntert, P., Mumenthaler, C., Wüthrich, K.: Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997)CrossRefGoogle Scholar
- 26.Herrmann, T., Güntert, P., Wüthrich, K.: Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002)CrossRefGoogle Scholar
- 27.Shen, Y., et al.: Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA. 105, 4685–4690 (2008)CrossRefGoogle Scholar
- 28.Shen, Y., Vernon, R., Baker, D., Bax, A.: De novo protein structure generation from incomplete chemical shift assignments. J. Biomol. NMR 43, 63–78 (2009)CrossRefGoogle Scholar
- 29.Case, D.A., et al.: The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)CrossRefGoogle Scholar
- 30.Van Der Spoel, D., et al.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005)CrossRefGoogle Scholar
- 31.Vranken, W.F., et al.: The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005)CrossRefGoogle Scholar
- 32.Jung, Y.S., Zweckstetter, M.: Mars—robust automatic backbone assignment of proteins. J. Biomol. NMR 30, 11–23 (2004)CrossRefGoogle Scholar
- 33.Shen, Y., Delaglio, F., Cornilescu, G., Bax, A.: TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009)CrossRefGoogle Scholar
- 34.Jaravine, V.A., Zhuravleva, A.V., Permi, P., Ibraghimov, I., Orekhov, V.Y.: Hyperdimensional NMR spectroscopy with nonlinear sampling. J. Am. Chem. Soc. 130, 3927–3936 (2008)CrossRefGoogle Scholar
- 35.Petoukhov, M.V., Konarev, P.V., Kikhney, A.G., Svergun, D.I.: ATSAS 2.1—towards automated and web-supported small-angle scattering data analysis. J. Appl. Crystallogr. 40, S223–S228 (2007)CrossRefGoogle Scholar
- 36.Fiorito, F., Herrmann, T., Damberger, F.F., Wüthrich, K.: Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [ 1H, 1H]-NOESY. J. Biomol. NMR 42, 23–33 (2008)CrossRefGoogle Scholar
- 37.Volk, J., Herrmann, T., Wüthrich, K.: Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J. Biomol. NMR 41, 127–138 (2008)CrossRefGoogle Scholar
- 38.Lensink, M.F., Mendez, R., Wodak, S.J.: Docking and scoring protein complexes: CAPRI 3rd edition. Proteins 69, 704–718 (2007)CrossRefGoogle Scholar
- 39.Mendez, R., Leplae, R., Lensink, M.F., Wodak, S.J.: Assessment of CAPRI predictions in rounds 3–5 shows progress in docking procedures. Proteins 60, 150–169 (2005)CrossRefGoogle Scholar
- 40.van Dijk, A.D., et al.: Data-driven docking: HADDOCK’s adventures in CAPRI. Proteins 60, 232–238 (2005)CrossRefGoogle Scholar
- 41.Schwieters, C.D., Kuszewski, J.J., Clore, G.M.: Using Xplor-NIH for NMR molecular structure determination. Prog. NMR Spectrosc. 48, 47–62 (2006)CrossRefGoogle Scholar
- 42.Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
- 43.Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004)CrossRefGoogle Scholar
- 44.Shen, Y., Bax, A.: Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J. Biomol. NMR 38, 289–302 (2007)CrossRefGoogle Scholar
- 45.Cornilescu, G., Delaglio, F., Bax, A.: Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999)CrossRefGoogle Scholar
- 46.McGuffin, L.J., Bryson, K., Jones, D.T.: The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000)CrossRefGoogle Scholar
- 47.Wang, Y.J., Jardetzky, O.: Investigation of the neighboring residue effects on protein chemical shifts. J. Am. Chem. Soc. 124, 14075–14084 (2002)CrossRefGoogle Scholar
- 48.Berjanskii, M.V., Wishart, D.S.: A simple method to predict protein flexibility using secondary chemical shifts. J. Am. Chem. Soc. 127, 14970–14971 (2005)CrossRefGoogle Scholar
- 49.Ulrich, E.L., et al.: BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008)CrossRefGoogle Scholar
- 50.Fogh, R.H., et al.: MEMOPS: data modelling and automatic code generation. J. Integr. Bioinform. 7, 123 (2010)Google Scholar
- 51.Bertini, I., Case, D.A., Ferella, L., Giachetti, A., Rosato, A.: A Grid-enabled web portal for NMR structure refinement with AMBER. Bioinformatics 27, 2384–2390 (2011)CrossRefGoogle Scholar
- 52.Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001)Google Scholar
- 53.Oostenbrink, C., Villa, A., Mark, A.E., Van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676 (2004)CrossRefGoogle Scholar
- 54.Schuler, L.D., Daura, X., Van Gunsteren, W.F.: An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 22, 1205–1218 (2001)CrossRefGoogle Scholar
- 55.Scott, W.R.P., et al.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607 (1999)CrossRefGoogle Scholar
- 56.van Gunsteren, W.F., et al.: Biomolecular Simulation: The Gromos 96 Manual and User Guide. BIOMOS BV, Zürich, Groningen (1996)Google Scholar
- 57.Ponder, J.W., Case, D.A.: Force fields for protein simulations. Adv. Protein Chem. 66, 27–85 (2003)CrossRefGoogle Scholar
- 58.Brooks, B.R., et al.: Charmm—a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)CrossRefGoogle Scholar
- 59.Jorgensen, W.L., Maxwell, D.S., TiradoRives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)CrossRefGoogle Scholar
- 60.Van Dijk, M., Wassenaar, T., Bonvin, A.M.J.J.: A flexible, Grid-enabled web portal for GROMACS molecular dynamics simulations. J. Chem. Theory Comput. (2012). doi: 10.1021/ct300102d Google Scholar
- 61.Villa, A., Fan, H., Wassenaar, T., Mark, A.E.: How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field? J. Phys. Chem. B 111, 6015–6025 (2007)CrossRefGoogle Scholar
- 62.Wassenaar, T.A., Mark, A.E.: The effect of box shape on the dynamic properties of proteins simulated under periodic boundary conditions. J. Comput. Chem. 27, 316–325 (2006)CrossRefGoogle Scholar
- 63.De Vries, S.J., van Dijk, M., Bonvin, A.M.J.J.: The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883–897 (2010)CrossRefGoogle Scholar
- 64.Herrmann, T., Güntert, P., Wüthrich, K.: Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171–189 (2002)CrossRefGoogle Scholar
- 65.Doreleijers, J.F., Sousa da Silva, A.W., Krieger, E., Nabuurs, S.B., Spronk, C.A.E.M., Stevens, T.J., Vranken, W.F., Vriend, G., Vuister, G.W.: CING: an integrated residue-based structure validation program suite. J. Biomol. NMR 54, 267–283 (2012)CrossRefGoogle Scholar
- 66.Doreleijers, J.F., et al.: NRG-CING: integrated validation reports of remediated experimental biomolecular NMR data and coordinates in wwPDB. Nucleic Acids Res. (2011). doi: 10.1093/nar/gkr1134 Google Scholar
- 67.Franke, D., Svergun, D.I.: DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42, 342–346 (2009)CrossRefGoogle Scholar
- 68.Volkov, V.V., Svergun, D.I.: Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003)CrossRefGoogle Scholar
- 69.Svergun, D.I.: Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999)CrossRefGoogle Scholar
- 70.Svergun, D.I., Petoukhov, M.V., Koch, M.H.: Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001)CrossRefGoogle Scholar
- 71.Bradley, D., Sfiligoi, I., Padhi, S., Frey, J., Tannenbaum, T.: Scalability and interoperability within glideinWMS. J. Phys.: Conf. Ser. 219, 062036 (2010)CrossRefGoogle Scholar
- 72.Verlato, M.: Extending WeNMR e-Infrastructure outside Europe. In: EGI Community Forum 2012/EMI Second Technical Conference, Munich (2012)Google Scholar
- 73.Bertini, I., et al.: Conformational space of flexible biological macromolecules from average data. J. Am. Chem. Soc. 132, 13553–13558 (2010)CrossRefGoogle Scholar