Journal of Grid Computing

, Volume 10, Issue 4, pp 601–630 | Cite as

WS-PGRADE/gUSE Generic DCI Gateway Framework for a Large Variety of User Communities

  • Peter Kacsuk
  • Zoltan Farkas
  • Miklos Kozlovszky
  • Gabor Hermann
  • Akos Balasko
  • Krisztian Karoczkai
  • Istvan Marton
Article

Abstract

The WS-PGRADE/gUSE generic DCI gateway framework has been developed to support a large variety of user communities. It provides a generic purpose, workflow-oriented graphical user interface to create and run workflows on various DCIs including clusters, Grids, desktop Grids and clouds. The framework can be used by NGIs to support small user communities who cannot afford to develop their own customized science gateway. The WS-PGRADE/gUSE framework also provides two API interfaces (Application Specific Module API and Remote API) to create application-specific science gateways according to the needs of different user communities. The paper describes in detail the workflow concept of WS-PGRADE, the DCI Bridge service that enables access to most of the popular European DCIs and the Application Specific Module and Remote API concepts to generate application-specific science gateways.

Keywords

Science gateway Customized interface Workflow Distributed computing infrastructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alameda, J., Christie, M., Fox, G., Futrelle, J., Gannon, D., Hategan, M., Kandaswamy, G., von Laszewski, G., Nacar, M.A., Pierce, M., Roberts, E., Severance, C., Thomas, M.: The open Grid computing environments collaboration: portlets and services for science gateways: research articles. Concurr. Comput.: Pract. Exper. 19, 921–942 (2007)CrossRefGoogle Scholar
  2. 2.
    Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible system for design and execution of scientific workflows. In: 16th International Conference on Scientific and Statistical Database Management. Proceedings, pp. 423–424 (2004)Google Scholar
  3. 3.
    Balaton, Z., Farkas, Z., Gombas, G., Kacsuk, P., Lovas, R., Marosi, A.C., Terstyanszky, G., Kiss, T., Lodygensky, O., Fedak, G., Emmen, A., Kelley, I., Taylor, I., Cardenas-Montes, M., Araujo, F.: EDGeS: The Common Boundary Between Service and Desktop Grids. Grid Computing, pp. 37–48. Springer US (2008)Google Scholar
  4. 4.
    Costa, A., Becciani, U., Massimino, P., Krokos, M., Caniglia, G., Gheller, C., Grillo, A., Vitello, F.: Visivoweb: a www environment for large-scale astrophysical visualization. Publ. Astron. Soc. Pac. 123, 503–512 (2011)CrossRefGoogle Scholar
  5. 5.
    Dahan, M., Boisseau, J.R.: The Gridport toolkit: a system for building Grid portals. In: Proceedings of the 10th IEEE International Symposium on High Performance Distributed Computing, pp. 216–227. IEEE Computer Society, Washington, DC (2001)Google Scholar
  6. 6.
    Decide science gateway: http://applications.eu-decide.eu/ (2011). Accessed 28 Oct 2012
  7. 7.
    Deelman, E., Singh, G., hui Su, M., Blythe, J., Gil, A., Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a framework for mapping complex scientific workflows onto distributed systems. Sci. Program. J. 13, 219–237 (2005)Google Scholar
  8. 8.
    Delaitre, T., Kiss, T., Goyeneche, A., Terstyanszky, G., Winter, S., Kacsuk, P.: Gemlca: running legacy code applications as Grid services. J. Grid Computing 3, 75–90 (2005)CrossRefGoogle Scholar
  9. 9.
    Doreleijers, J.F., Vranken, W.F., Schulte C., Markley, J.L., Ulrich, E.L., Vriend, G., Vuister, G.W.: NRG-CING: integrated validation reports of remediated experimental biomolecular nmr data and coordinates in wwpdb. Nucleic Acids Res. 40(D1), D519–D524 (2012)CrossRefGoogle Scholar
  10. 10.
    Ellert, M., Grønager, M., Konstantinov, A., Kónya, B., Lindemann, J., Livenson, I., Nielsen, J., Niinimäki, M., Smirnova, O., Wäänänen, A.: Advanced resource connector middleware for lightweight computational Grids. Future Gener. Comput. Syst. 23(2), 219–240 (2007)CrossRefGoogle Scholar
  11. 11.
    Erwin, D.W., Snelling, D.F.: Unicore: a Grid computing environment. In: Euro-Par 2001 Parallel Processing, Lecture Notes in Computer Science, pp. 825–834. Springer, Berlin (2001)CrossRefGoogle Scholar
  12. 12.
    Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong, H.-L., Villazon, A., Wieczorek, M.: Askalon: a development and Grid computing environment for scientific workflows. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp. 450–471. Springer, London (2007)CrossRefGoogle Scholar
  13. 13.
    Farkas, Z., Kacsuk, P.: P-grade portal: a generic workflow system to support user communities. Future Gener. Comput. Syst. 27(5), 454–465 (2011)CrossRefGoogle Scholar
  14. 14.
    Farkas, Z., Kacsuk, P., Balaton, Z., Gombás, G.: Interoperability of boinc and egee. Future Gener. Comput. Syst. 26(8), 1092–1103 (2010)CrossRefGoogle Scholar
  15. 15.
    Gesing, S., Grunzke, R., Balasko, A., Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., Fels, G., Herres-Pawlis, S., Kacsuk, P., Kozlovszky, M., Krüer, J., Packschies, L., Schäfer, P., Schuller, B., Schuster, J., Steinke, T., Zikszay Fabri, A., Wewior, M., Müller-Pfefferkorn, R., Kohlbacher, O.: Granular security for a science gateway in structural bioinformatics. In: Proc. IWSG-Life 2011 (2011)Google Scholar
  16. 16.
    Gesing, S., van Hemert, J., Kacsuk, P., Kohlbacher, O.: Special issue: portals for life sciences—providing intuitive access to bioinformatic tools. Concurr. Comput.: Pract. Exper. 23(3), 223–234 (2011)CrossRefGoogle Scholar
  17. 17.
    gLite: gLite. http://glite.web.cern.ch/glite/ (2010). Accessed 28 Oct 2012
  18. 18.
  19. 19.
    gUSE sourceforge webpage: http://guse.sf.net/ (2011). Accessed 28 Oct 2012
  20. 20.
  21. 21.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Res. 34, 729–732 (2006)CrossRefGoogle Scholar
  22. 22.
    Indicate e-culture science gateway: http://indicate-gw.consorzio-cometa.it/ (2011). Accessed 28 Oct 2012
  23. 23.
    Kovács, P.K.J., Lomaka, A.: Using dedicated desktop Grid system for accelerating drug discovery. Future Gener. Comput. Syst. 27, 657–666 (2011)CrossRefGoogle Scholar
  24. 24.
    Kacsuk, P.: P-grade portal family for Grid infrastructures. Concurr. Comput.: Pract. Exper. 23(3), 235–245 (2011)CrossRefGoogle Scholar
  25. 25.
    Kacsuk, P., Karoczkai, K., Hermann, G., Sipos, G., Kovacs, J.: Ws-pgrade: supporting parameter sweep applications in workflows. In: Third Workshop on Workflows in Support of Large-Scale Science. WORKS 2008, pp. 1–10 (2008)Google Scholar
  26. 26.
    Kacsuk, P., Kovács, J., Farkas, Z., Marosi, A.C., Balaton, Z.: Towards a powerful European DCI based on desktop Grids. J. Grid Computing 9(2), 219–239 (2011)CrossRefGoogle Scholar
  27. 27.
    Kaiser, H., Merzky, A., Hirmer, S., Allen, G., Seidel, E.: The SAGA C+ + reference implementation: a milestone toward new high-level Grid applications. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06. ACM, New York (2006)Google Scholar
  28. 28.
    Kertész, A., Kacsuk, P.: Gmbs: a new middleware service for making Grids interoperable. Future Gener. Comput. Syst. 26, 542–553 (2010)CrossRefGoogle Scholar
  29. 29.
    Kiss, T., Greenwell, P., Heindl, H., Terstyanszky, G., Weingarten, N.: Parameter sweep workflows for modelling carbohydrate recognition. J. Grid Computing 8, 587–601 (2010). doi:10.1007/s10723-010-9166-8 CrossRefGoogle Scholar
  30. 30.
    Korkhov, V., Krefting, D., Kukla, T., Terstyanszky, G., Caan, M., Olabarriaga, S.: Exploring workflow interoperability tools for neuroimaging data analysis. In: 6th Workshop on Workflows in Support of Large-Scale Science (WORKS’11) (2011)Google Scholar
  31. 31.
    Kunszt, P., Malmström, L., Fantini, N., Sudholt, W., Lautenschlager, M., Reifler, R., Ruckstuhl, S.: Accelerating 3d protein modeling using cloud computing. In: Workshop on Computing Advances in Life Science, 7th IEEE International Conference on e-Science, Stockholm (2011)Google Scholar
  32. 32.
    Kunszt, P., Pernas, L.E., Quandt, A., Schmid, E., Hunt, E., Malmström, L.: The Swiss Grid proteomics portal. In: Proceedings of the Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, pp. 1–21 (2011)Google Scholar
  33. 33.
  34. 34.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system: research articles. Concurr. Comput.: Pract. Exper. 18(10), 1039–1065 (2006)CrossRefGoogle Scholar
  35. 35.
    Ogsa basic execution services: http://www.ogf.org/documents/GFD.108.pdf (2011). Accessed 28 Oct 2012
  36. 36.
    PBS: Pbs professional. http://www.pbsworks.com/Product.aspx?id=1 (2011). Accessed 28 Oct 2012
  37. 37.
    Renderfarm.fi: http://www.renderfarm.fi/ (2011). Accessed 28 Oct 2012
  38. 38.
    Shahand, S., Santcroos, M., Mohammed, Y., Korkhov, V., Luyf, A., van Kampen, A., Olabarriaga, S.: Front-ends to biomedical data analysis on Grids. In: Proceedings of HealthGrid 2011 (2011)Google Scholar
  39. 39.
    Shiwa simulation platform: http://ssp.shiwa-workflow.eu/ (2012). Accessed 28 Oct 2012
  40. 40.
    Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana workflow environment: architecture and applications. In: Workflows for e-Science, Scientific Workflows for Grids, pp. 320–339. Springer, London (2007)Google Scholar
  41. 41.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Concurr. Comput.: Pract. Exper. 17(2–4), 323–356 (2005)CrossRefGoogle Scholar
  42. 42.
    The sci-bus project: http://www.sci-bus.eu/ (2011). Accessed 28 Oct 2012
  43. 43.
    Vine toolkit: http://vinetoolkit.org/ (2011). Accessed 28 Oct 2012

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Peter Kacsuk
    • 1
  • Zoltan Farkas
    • 1
  • Miklos Kozlovszky
    • 1
  • Gabor Hermann
    • 1
  • Akos Balasko
    • 1
  • Krisztian Karoczkai
    • 1
  • Istvan Marton
    • 1
  1. 1.MTA SZTAKIBudapestHungary

Personalised recommendations