Journal of Grid Computing

, Volume 10, Issue 4, pp 725–742 | Cite as

A Grid-Enabled Gateway for Biomedical Data Analysis

  • Shayan Shahand
  • Mark Santcroos
  • Antoine H. C. van Kampen
  • Sílvia Delgado Olabarriaga


Biomedical researchers can leverage Grid computing technology to address their increasing demands for data- and compute-intensive data analysis. However, usage of existing Grid infrastructures remains difficult for them. The e-infrastructure for biomedical science (e-BioInfra) is a platform with services that shield middleware complexities, in particular workflow management and monitoring. These services can be invoked from a web-based interface, called e-BioInfra Gateway, to perform large scale data analysis experiments, such that the biomedical researchers can focus on their own research problems. The gateway was designed to simplify usage both by biomedical researchers and e-BioInfra administrators, and to support straightforward extensions with new data analysis methods. In this paper we present the architecture and implementation of the gateway, also showing statistics for its usage. We also share lessons learned during the gateway development and operation. The gateway is currently used in several biomedical research projects and in teaching medical students the principles of data analysis.


Scientific gateway Grid computing Biomedical research E-science Grid user interface Grid web portal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner, Á., Gianoli, A., Lõrentey, K., Spataro, F.: Voms, an authorization system for virtual organizations. In: Fernández Rivera, F., Bubak, M., Gómez Tato, A., Doallo, R. (eds.) Grid Computing. Lecture Notes in Computer Science, vol. 2970, pp. 33–40. Springer, Berlin/Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Altunay, M., Avery, P., Blackburn, K., Bockelman, B., Ernst, M., Fraser, D., Quick, R., Gardner, R., Goasguen, S., Levshina, T., Livny, M., McGee, J., Olson, D., Pordes, R., Potekhin, M., Rana, A., Roy, A., Sehgal, C., Sfiligoi, I., Wuerthwein, F.: A Science Driven Production Cyberinfrastructure—the Open Science Grid. J. Grid Computing 9, 201–218 (2011)CrossRefGoogle Scholar
  3. 3.
    Andronico, G., Ardizzone, V., Barbera, R., Becker, B., Bruno, R., Calanducci, A., Carvalho, D., Ciuffo, L., Fargetta, M., Giorgio, E., La Rocca, G., Masoni, A., Paganoni, M., Ruggieri, F., Scardaci, D.: e-infrastructures for e-science: a global view. J. Grid Computing 9, 155–184 (2011)CrossRefGoogle Scholar
  4. 4.
    Barbera, R., Andronico, G., Donvito, G., Falzone, A., Keijser, J.J., Rocca, G.L., Milanesi, L., Maggi, G.P., Vicario, S.: A Grid portal with robot certificates for bioinformatics phylogenetic analyses. Concurrency Computat.: Pract. Exper. 23(3), 246–255 (2011)CrossRefGoogle Scholar
  5. 5.
    Berkeley Database Information Index (BDII): Accessed 23 May 2012
  6. 6.
    Basney, J., Humphrey, M., Welch, V.: The myproxy online credential repository. Softw. Pract. Exper. 35(9), 801–816 (2005)CrossRefGoogle Scholar
  7. 7.
    Bertini, I., Case, D.A., Ferella, L., Giachetti, A., Rosato, A.: A Grid-enabled web portal for NMR structure refinement with AMBER. Bioinformatics 27(17), 2384–2390 (2011). doi: 10.1093/bioinformatics/btr415 CrossRefGoogle Scholar
  8. 8.
    Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., Fles, G., Gesing, S., et al.: MoSGrid: progress of workflow driven chemical simulations. In: Proceedings of Grid Workflow Workshop (GWW) (2011)Google Scholar
  9. 9.
    Breton, V., Dean, K., Solomonides, T., Blanquer, I., Hernandez, V., Medico, E., Maglaveras, N., Benkner, S., Lonsdale, G., Lloyd, S., Hassan, K., McClatchey, R., Miguet, S., Montagnat, J., Pennec, X., De Neve, W., De Wagter, C., Heeren, G., Maigne, L., Nozaki, K., Taillet, M., Bilofsky, H., Ziegler, R., Hoffman, M., Jones, C., Cannataro, M., Veltri, P., Aloisio, G., Fiore, S., Mirto, M., Chouvarda, I., Koutkias, V., Malousi, A., Lopez, V., Oliveira, I., Sanchez, J.P., Martin-Sanchez, F., De Moor, G., Claerhout, B., Herveg, J.A.: The healthgrid white paper. Stud. Health Technol. Inform. 112, 249–321 (2005)Google Scholar
  10. 10.
    Caan, M., Shahand, S., Vos, F., van Kampen, A., Olabarriaga, S.: Evolution of Grid-based services for diffusion tensor image analysis. Future Gener. Comput. Syst. 28(8), 1194–1204 (2012)CrossRefGoogle Scholar
  11. 11.
    Caan, M., Vos, F., van Kampen, A., Olabarriaga, S., van Vliet, L.: Gridifying a diffusion tensor imaging analysis pipeline. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 733–738 (2010)Google Scholar
  12. 12.
    Camarasu-Pop, S., Glatard, T., Moscicki, J.T., Benoit-Cattin, H., Sarrut, D.: Dynamic partitioning of GATE Monte-Carlo simulations on EGEE. J. Grid Computing 8(2), 241–259 (2010)CrossRefGoogle Scholar
  13. 13.
    Casajus, A., Graciani, R., Paterson, S., Tsaregorodtsev, A., the Lhcb Dirac Team: Dirac pilot framework and the dirac workload management system. J. Phys.: Conf. Ser. 219(6), 062,049 (2010)CrossRefGoogle Scholar
  14. 14.
    DTI Preprocessing on the e-BioinfraGateway: Accessed 23 May 2012
  15. 15.
    EGI Science Gateways: Accessed 23 May 2012
  16. 16.
    Ferrari, T., Gaido, L.: Resources and services of the EGEE production infrastructure. J. Grid Computing 9, 119–133 (2011)CrossRefGoogle Scholar
  17. 17.
    Ferreira da Silva, R., Camarasu-Pop, S., Grenier, B., Hamar, V., Manset, D., Montagnat, J., Revillard, J., Balderrama, J.R., Tsaregorodtsev, A., Glatard, T.: Multi-infrastructure workflow execution for medical simulation in the Virtual Imaging Platform. In: Proceedings of HealthGrid 2011. Bristol, UK (2011)Google Scholar
  18. 18.
    Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.M.: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14(1), 11–22 (2004)CrossRefGoogle Scholar
  19. 19.
    FMRIB’s Diffusion Toolbox—BEDPOSTX: Accessed 23 May 2012
  20. 20.
    Genome Compare on the e-BioinfraGateway: Accessed 23 May 2012
  21. 21.
    Gesing, S., Hemert, J.v., Kacsuk, P., Kohlbacher, O.: Special issue: portals for life sciences—providing intuitive access to bioinformatic tools. Concurrency Computat.: Pract. Exper. 23(3), 223–234 (2011)CrossRefGoogle Scholar
  22. 22.
    Glatard, T., Montagnat, J., Lingrand, D., Pennec, X.: Flexible and efficient workflow deployment of data-intensive applications on Grids with MOTEUR. Int. J. High Perform. Comput. Appl. 22(3), 347–360 (2008)CrossRefGoogle Scholar
  23. 23.
    Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P., Von Laszewski, G., Lee, C., Merzky, A., Rajic, H., Shalf, J.: Saga: a simple api for Grid applications. High-level application programming on the Grid. Comput. Methods Sci. Technol. 12(1), 7–20 (2006)Google Scholar
  24. 24.
    Helmer, K.G., Ambite, J.L., Ames, J., Ananthakrishnan, R., Burns, G., Chervenak, A.L., Foster, I., Liming, L., Keator, D., Macciardi, F., Madduri, R., Navarro, J.P., Potkin, S., Rosen, B., Ruffins, S., Schuler, R., Turner, J.A., Toga, A., Williams, C., Kesselman, C., for the Biomedical Informatics Research Network: Enabling collaborative research using the Biomedical Informatics Research Network (BIRN). J. Am. Med. Inform. Assoc. 18(4), 416–422 (2011)CrossRefGoogle Scholar
  25. 25.
    Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research (2009)Google Scholar
  26. 26.
    Kacsuk, P.: P-GRADE portal family for Grid infrastructures. Concurrency Computat.: Pract. Exper. 23(3), 235–245 (2011)CrossRefGoogle Scholar
  27. 27.
    Kim, J., Maddineni, S., Jha, S.: Building gateways for life-science applications using the dynamic application runtime environment (dare) framework. In: Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, TG ’11, pp. 38:1–38:8. ACM, New York (2011)Google Scholar
  28. 28.
    Kiss, T., Greenwell, P., Heindl, H., Terstyanszky, G., Weingarten, N.: Parameter sweep workflows for modelling carbohydrate recognition. J. Grid Computing 8, 587–601 (2010)CrossRefGoogle Scholar
  29. 29.
    Klarenbeek, P.L., Tak, P.P., van Schaik, B.D.C., Zwinderman, A.H., Jakobs, M.E., Zhang, Z., van Kampen, A.H.C., van Lier, R.A.W., Baas, F., de Vries, N.: Human T-cell memory consists mainly of unexpanded clones. Immunol. Lett. 133(1), 42–48 (2010)CrossRefGoogle Scholar
  30. 30.
    Korkhov, V., Krefting, D., Kukla, T., Terstyanszky, G.Z., Caan, M., Olabarriaga, S.D.: Exploring workflow interoperability tools for neuroimaging data analysis. In: Proceedings of the 6th Workshop on Workflows in Support of Large-Scale Science, WORKS ’11, pp. 87–96. ACM, New York (2011)CrossRefGoogle Scholar
  31. 31.
    Krefting, D., Bart, J., Beronov, K., Dzhimova, O., Falkner, J., Hartung, M., Hoheisel, A., Knoch, T.A., Lingner, T., Mohammed, Y., Peter, K., Rahm, E., Sax, U., Sommerfeld, D., Steinke, T., Tolxdorff, T., Vossberg, M., Viezens, F., Weisbecker, A.: MediGRID: Towards a user friendly secured Grid infrastructure. Future Gener. Comput. Syst. 25(3), 326–336 (2009)CrossRefGoogle Scholar
  32. 32.
    Luyf, A., van Schaik, B., de Vries, M., Baas, F., van Kampen, A., Olabarriaga, S.: Initial steps towards a production platform for DNA sequence analysis on the Grid. BMC Bioinformatics 11(1), 598 (2010)CrossRefGoogle Scholar
  33. 33.
    Marco, C., Fabio, C., Alvise, D., Antonia, G., Francesco, G., Alessandro, M., Moreno, M., Salvatore, M., Fabrizio, P., Luca, P., Francesco, P.: The glite workload management system. In: Abdennadher, N., Petcu, D. (eds.) Advances in Grid and Pervasive Computing. Lecture Notes in Computer Science, vol. 5529, pp. 256–268. Springer, Berlin (2009)CrossRefGoogle Scholar
  34. 34.
    Model–view–controller—Wikipedia: Accessed 23 May 2012
  35. 35.
    Montagnat, J., Isnard, B., Glatard, T., Maheshwari, K., Fornarino, M.: A data-driven workflow language for Grids based on array programming principles. In: Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science (WORKS) (2009)Google Scholar
  36. 36.
    Moscicki, J.T., Lamanna, M., Bubak, M., Sloot, P.M.A.: Processing moldable tasks on the Grid: late job binding with lightweight user-level overlay. Future Gener. Comput. Syst. 27(6), 725–736 (2011)CrossRefGoogle Scholar
  37. 37.
    Novotny, J., Russell, M., Wehrens, O.: GridSphere: a portal framework for building collaborations. Concurrency Computat.: Pract. Exper. 16(5), 503–513 (2004)CrossRefGoogle Scholar
  38. 38.
    Olabarriaga, S.D., Glatard, T., de Boer, P.T.: A virtual laboratory for medical image analysis. IEEE Trans. Inf. Technol. Biomed. 14(4), 979–985 (2010)CrossRefGoogle Scholar
  39. 39.
    Olabarriaga, S.D., Glatard, T., Boulebiar, K., de Boer, P.T.: From “low hanging” to “user ready”: initial steps into a HealthGrid. In: Global Healthgrid: e-Science Meets Biomedical Informatics—Proceedings of HealthGrid 2008, vol. 138, pp. 70–79 (2008)Google Scholar
  40. 40.
    Pandey, S., Voorsluys, W., Rahman, M., Buyya, R., Dobson, J.E., Chiu, K.: A Grid workflow environment for brain imaging analysis on distributed systems. Concurrency Computat.: Pract. Exper. 21(16), 2118–2139 (2009)CrossRefGoogle Scholar
  41. 41.
    Peters, B.D., Machielsen, M.W.J., Hoen, W.P., Caan, M.W.A., Malhotra, A.K., Szeszko, P.R., Duran, M., Olabarriaga, S.D., de Haan, L.: Polyunsaturated fatty acid concentration predicts myelin integrity in earlyphase psychosis. Schizophr. Bull. (2012). doi: 10.1093/schbul/sbs089 Google Scholar
  42. 42.
    Redolfi, A., McClatchey, R., Anjum, A., Zijdenbos, A., Manset, D., Barkhof, F., Spenger, C., Legré, Y., Wahlund, L.O., di San Pietro, C.B., Frisoni, G.B.: Grid infrastructures for computational neuroscience: the neuGRID example. Future Neurol. 4(6), 703–722 (2009)CrossRefGoogle Scholar
  43. 43.
    Shahand, S., Caan, M., van Kampen, A., Olabarriaga, S.: Integrated support for neuroscience research: from study design to publication. In: Proceedings of HealthGrid 2012. Amsterdam, NL (2012)Google Scholar
  44. 44.
    Shahand, S., Santcroos, M., Mohammed, Y., Korkhov, V., Luyf, A., van Kampen, A., Olabarriaga, S.: Front-ends to biomedical data analysis on Grids. In: Proceedings of HealthGrid 2011. Bristol, UK (2011)Google Scholar
  45. 45.
    Stewart, G.A., Cameron, D., Cowan, G.A., McCance, G.: Storage and data management in egee. In: Proceedings of the fifth Australasian symposium on ACSW frontiers, vol. 68, ACSW ’07, pp. 69–77. Australian Computer Society, Inc., Darlinghurst, Australia (2007)Google Scholar
  46. 46.
    The BigGrid Project: Accessed 23 May 2012
  47. 47.
    The Engineframe Project: Accessed 23 May 2012
  48. 48.
    The gLite Project: Accessed 23 May 2012
  49. 49.
    The Google Web Toolkit. Accessed 23 May 2012
  50. 50.
    The Hibernate Project: Accessed 23 May 2012
  51. 51.
    The Liferay Project: Accessed 23 May 2012
  52. 52.
    The Pylons Project: Accessed 23 May 2012
  53. 53.
    The Spring Project: Accessed 23 May 2012
  54. 54.
    Using an Aladdin eToken PRO to store Grid certificates: Accessed 23 May 2012
  55. 55.
    van Wingen, G.A., Geuze, E., Caan, M.W.A., Kozicz, T., Olabarriaga, S.D., Denys, D., Vermetten, E., Fernández, G.: Persistent and reversible consequences of combat stress on the mesofrontal circuit and cognition. Proc. Natl. Acad. Sci. (PNAS) (2012). doi: 10.1073/pnas.1206330109 Google Scholar
  56. 56.
    Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., Pamidighantam, S.: TeraGrid science gateways and their impact on science. Comput. 41(11), 32 –41 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Shayan Shahand
    • 1
  • Mark Santcroos
    • 1
  • Antoine H. C. van Kampen
    • 1
    • 2
  • Sílvia Delgado Olabarriaga
    • 1
  1. 1.Bioinformatics Laboratory, Department of Clinical Epidemiology Biostatistics and Bioinformatics, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Biosystems Data Analysis Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations