Journal of Grid Computing

, Volume 10, Issue 1, pp 185–209 | Cite as

iCanCloud: A Flexible and Scalable Cloud Infrastructure Simulator

  • Alberto Núñez
  • Jose L. Vázquez-Poletti
  • Agustin C. Caminero
  • Gabriel G. Castañé
  • Jesus Carretero
  • Ignacio M. Llorente


Simulation techniques have become a powerful tool for deciding the best starting conditions on pay-as-you-go scenarios. This is the case of public cloud infrastructures, where a given number and type of virtual machines (in short VMs) are instantiated during a specified time, being this reflected in the final budget. With this in mind, this paper introduces and validates iCanCloud, a novel simulator of cloud infrastructures with remarkable features such as flexibility, scalability, performance and usability. Furthermore, the iCanCloud simulator has been built on the following design principles: (1) it’s targeted to conduct large experiments, as opposed to others simulators from literature; (2) it provides a flexible and fully customizable global hypervisor for integrating any cloud brokering policy; (3) it reproduces the instance types provided by a given cloud infrastructure; and finally, (4) it contains a user-friendly GUI for configuring and launching simulations, that goes from a single VM to large cloud computing systems composed of thousands of machines.


Cloud computing Cloud computing simulator Cloud hypervisor Validation Scalability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P., Stockinger, K., Zini, F.: Simulation of dynamic Grid replication strategies in OptorSim. In: Proc. of the 3rd Intl. Workshop on Grid Computing (Grid). Baltimore, USA (2002)Google Scholar
  2. 2.
    Buyya, R., Beloglazov, A., Abawajy, J.: Energy-efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges. In: Proc of the Intl. Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA). Las Vegas, USA (2010)Google Scholar
  3. 3.
    Buyya, R., Murshed, M.: GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing. Concurrency and Computation: Pract. Ex. 14, 1175–1220 (2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable cloud computing environments and the CloudSim toolkit: challenges and opportunities. In: Proc. of the 7th High Performance Computing and Simulation Conference (HPCS) (2009)Google Scholar
  5. 5.
    Calheiros, R.N., Buyya, R., De Rose, C.A.F.: A heuristic for mapping virtual machines and links in emulation testbeds. In: Proc. of the Intl. Conference on Parallel Processing (ICPP). Vienna, Austria (2009)Google Scholar
  6. 6.
    Calheiros, R.N., Buyya, R., De Rose, C.A.F.: Building an automated and self-configurable emulation testbed for Grid applications. Software Pract. Exper. 40(5), 405–429 (2010)Google Scholar
  7. 7.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software Pract. Exper. 41(1), 23–50 (2011)CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., Gautam, N.: Managing server energy and operational costs in hosting centers. In: Proc. of the Intl Conference on Measurements and Modeling of Computer Systems. Banff, Alberta, Canada (2005)Google Scholar
  9. 9.
    CSIM Development Toolkit for Simulation and Modeling: Web page at Last accessed 27 July 2011
  10. 10.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and Grid computing 360° compared. In: Proc. Grid Computing Environments Workshop (2008)Google Scholar
  11. 11.
    Foster, I.T., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Virtual clusters for Grid communities. In: Proc. of the Sixth Intl. Symposium on Cluster Computing and the Grid (CCGRID). Singapore (2006)Google Scholar
  12. 12.
    Freund, R.F., Gherrity, M., Ambrosius, S.L., Campbell, M., Halderman, M., Hensgen, D.A., Keith, E.G., Kidd, T., Kussow, M., Lima, J.D., Mirabile, F., Moore, L., Rust, B., Siegel, H.J.: Scheduling resources in multi-user, heterogeneous, computing environments with SmartNet. In: Proc. of the 7th Heterogeneous Computing Workshop (HCW). Orlando, USA (1998)Google Scholar
  13. 13.
    Fujiwara, K., Casanova, H.: Speed and accuracy of network simulation in the simgrid framework. In: Proc. of the 1st Intl. Workshop on Network Simulation Tools (NSTools). Nantes, France (2007)Google Scholar
  14. 14.
    Harri, A., Linkin, V., Pichkadze, K., Schmidt, W., Pellinen, R., Lipatov, A., Vazquez, L., Guerrero, H., Uspensky, M., Polkko, J.: MMPM-Mars MetNet pre-cursor mission. In: European Geosciences Union General Assembly. Vienna, Austria (2008)Google Scholar
  15. 15.
    Kim, K.H., Beloglazov, A., Buyya, R.: Power-aware provisioning of cloud resources for real-time services. In: Proc. of the 7th Intl. Workshop on Middleware for Grids, Clouds and e-Science. Urbana Champaign, Illinois, USA (2009)Google Scholar
  16. 16.
    Kliazovich, D., Bouvry, P., Khan, S.U.: Greencloud: A packet-level simulator of energy-aware cloud computing data centers. J. Supercomput. (2010). doi: 10.1007/s11227-010-0504-1 Google Scholar
  17. 17.
    Lim, S.H., Sharma, B., Nam, G., Kim, E.K., Das, C.R.: MDCSim: A multi-tier data center simulation, platform. In: Intl. Conference on Cluster Computing and Workshops (CLUSTER). New Orleans, USA (2009)Google Scholar
  18. 18.
    Liu, J., Nicol, D.M.: DaSSF 3.1 User’s Manual. Dartmouth College (2001)Google Scholar
  19. 19.
    Liu, X.: Scalable online simulation for modeling Grid dynamics. Ph.D. thesis, Univ. of California at San Diego (2004)Google Scholar
  20. 20.
    Moreno, R., Montero, R., Llorente, I.: Elastic management of cluster-based services in the cloud. In: Proc. of the 1st Workshop on Automated Control for Datacenters and Clouds (ACDC), held jointly with the Intl. Conference on Autonomic Computing and Communications. Barcelona, Spain (2009)Google Scholar
  21. 21.
    Núñez, A., Fernández, J., Garcia, J.D., Garcia, F., Carretero, J.: New techniques for simulating high performance MPI applications on large storage networks. J. Supercomput. 51(1), 40–57 (2010). doi: 10.1007/s11227-009-0279-4.CrossRefGoogle Scholar
  22. 22.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: Proc. of the Sixth Intl. Symposium on Cluster Computing and the Grid (CCGRID). Shanghai, China (2009)Google Scholar
  23. 23.
    OPNET modeller: Web page at Last accessed 18 Sept 2010
  24. 24.
    Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive disks (RAID). In: Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, pp. 109–116. Chicago, IL, USA (1988)Google Scholar
  25. 25.
    Romero, P., Barderas, G., Vázquez-Poletti, J.L., Llorente, I.M.: Chronogram to detect Phobos eclipses on Mars with the MetNet precursor lander. Planet. Space Sci. 59(13), 1542–1550 (2011)CrossRefGoogle Scholar
  26. 26.
    Sterling, T.L., Stark, D.: A high-performance computing forecast: partly cloudy. Comput. Sci. Eng. 11(4), 42–49 (2009)CrossRefGoogle Scholar
  27. 27.
    Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya, R.: A toolkit for modelling and simulating data Grids: an extension to GridSim. Pract. Ex. 20(13), 1591–1609 (2008)CrossRefGoogle Scholar
  28. 28.
    The Economist, A Special Report on Corporate IT: Web page at Accessed 1 Oct 2008
  29. 29.
    The Message Passing Interface (MPI) standard: Web page at Last accessed 18 Sept 2010
  30. 30.
    The Network Animator, Nam: Web page at Last accessed 27 Jul 2011
  31. 31.
    The Network Simulator, NS-2: Web page at Last accessed 18 Sept 2010
  32. 32.
    Varga, A.: The OMNeT+ + discrete event simulation system,. In: Proc. of the European Simulation Multiconference (ESM). Prague, Czech Republic (2001)Google Scholar
  33. 33.
    Vázquez-Poletti, J.L., Barderas, G., Llorente, I.M., Romero, P.: A Model for Efficient onboard actualization of an instrumental cyclogram for the Mars MetNet mission on a public cloud infrastructure. In: Proc. of PARA: State of the Art in Scientific and Parallel Computing (Lecture Notes in Computer Science), pp. 33–42. Reykjavík, Iceland (2012)Google Scholar
  34. 34.
    Vouk, M.A.: Cloud computing: Issues, research and implementations. In: Proc. of the 30th Intl. Conference on Information Technology Interfaces (ITI). Dubrovnic, Croatia (2008)Google Scholar
  35. 35.
    Wang, Z., Zhu, X., McCarthy, C., Ranganathan, P., Talwar, V.: Feedback control algorithms for power management of servers. In: Proc. of the Third International Workshop on Feedback Control Implementation and Design in Computing Systems and Networks (FeBid). Annapolis, USA (2008)Google Scholar
  36. 36.
    Wickremasinghe, B., Calheiros, R.N., Buyya, R.: Cloudanalyst: A cloudsim-based visual modeller for analysing cloud computing environments and applications. In: Proc. of the 24th Intl. Conference on Advanced Information Networking and Applications (AINA). Perth, Australia (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alberto Núñez
    • 1
  • Jose L. Vázquez-Poletti
    • 2
  • Agustin C. Caminero
    • 3
  • Gabriel G. Castañé
    • 4
  • Jesus Carretero
    • 4
  • Ignacio M. Llorente
    • 2
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Complutense de MadridMadridSpain
  2. 2.Dep. de Arquitectura de Computadores y Automática, Facultad de InformáticaUniversidad Complutense de MadridMadridSpain
  3. 3.Dep. de Sistemas de Comunicación y ControlUniversidad Nacional de Educación a DistanciaMadridSpain
  4. 4.Dep. de InformáticaUniversidad Carlos III de MadridMadridSpain

Personalised recommendations