Journal of Grid Computing

, Volume 9, Issue 3, pp 303–323 | Cite as

An Energy-Efficient Resource Allocation Scheme for Mobile Ad Hoc Computational Grids

Article

Abstract

Due to recent advancements in mobile computing and communication technologies, mobile ad hoc computational Grids are emerging as a new computing paradigm, enabling innovative applications through sharing of computing resources among mobile devices without any pre-existing network infrastructure. Energy-efficient resource allocation is one of the key issues in mobile ad hoc computational Grids due to limited battery life of mobile nodes. To reduce energy consumption, we propose a hybrid power-based resource allocation scheme for allocation of interdependent tasks to nodes within mobile ad hoc computational Grid. The basic idea is to exploit dependencies and task type, and allocate interdependent tasks to nodes accessible at minimum transmission power. We also propose a power-based algorithm to search a group of closest nodes to allocate a set of interdependent tasks. Compared to traditional algorithms, complexity of proposed algorithm depends on number of transmission power levels rather than number of nodes within a Grid. The scheme is validated in a simulation environment using various workloads and parameters.

Keywords

Computational Grid Ad hoc networks Resource allocation Task dependencies Mobile Grids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, M., Buyya, R., Laforenza, D.: Grids and Grid Technologies for Wire Area Distributed Computing. Software—Practice and Experience. Wiley, New York (2002)Google Scholar
  2. 2.
    Agrawal, D.P., Zeng, Q.A.: Introduction to Wireless and Mobile Systems. Thomson Brooks, San Francisco (2003)Google Scholar
  3. 3.
    Samad, T., Bay, J.S., Godbole, D.: Network-centric systems for military operations in urban terrain: the role of UAVs. Proc. IEEE 95(1), 92–107 (2007)CrossRefGoogle Scholar
  4. 4.
    Balan, R.K., Satyanarayanan, M., Park, S.Y., Okoshi, T.: Tactics-based remote execution for mobile computing. In: Proceedings of MobiSys 2003: The 1st International Conference on Mobile systems, Applications and Services (2003)Google Scholar
  5. 5.
    Wireless Grids Working Paper I, http://wirelessgrids.net/people.html
  6. 6.
    Shah, S.C., Chauhdary, S.H., Bashir, A.K., Park, M.S.: A centralized location-based job scheduling algorithm for interdependent jobs in mobile ad hoc computational Grids. J. Appl. Sci. 10(3), 174–181 (2010)CrossRefGoogle Scholar
  7. 7.
    McClatchey, R., Anjum, A., Stockinger, H., Ali, A., Willers, I., Thomas, M.: Data Intensive and Network Aware (DIANA) Grid scheduling. J. Grid Computing 5(1), 43–64 (2007)CrossRefGoogle Scholar
  8. 8.
    Villela, D.: Minimizing the average completion time for concurrent Grid applications. J. Grid Computing 8(1), 47–59 (2010)CrossRefGoogle Scholar
  9. 9.
    Chang, R.-S., Chang, J.-S., Lin, P.-S.: An ant algorithm for balanced job scheduling in Grids. Future Gener. Comput. Syst. 25, 20–27 (2009)CrossRefGoogle Scholar
  10. 10.
    Yu, C., Marinescu, D.C.: Algorithms for divisible load scheduling of data-intensive applications. J. Grid Computing 8(1), 133–155 (2009)CrossRefGoogle Scholar
  11. 11.
    Yang, J., Bai, Y., Qiu, Y.: A decentralized resource allocation policy in minigrid. Future Gener. Comput. Syst. 23, 359–366 (2007)CrossRefGoogle Scholar
  12. 12.
    Desprez, F., Vernois, A.: Simultaneous scheduling of replication and computation for data-intensive applications on the Grid. J. Grid Computing 4(1), 19–31 (2006)CrossRefGoogle Scholar
  13. 13.
    Shilve, S., Siegel, H.J., Maciejewski, A.A., Sugavanam, P., Banka, T., Castain, R., Chindam, K., Dussinger, S., Pichumani, P., Satyasekaran, P., Saylor, W., Sendek, D., Sousa, J., Sridharan, J., Velazco, J.: Static allocation of resources to communicating subtasks in a heterogeneous ad hoc Grid environment. J. Parallel Distrib. Comput. 66(4), 600–611 (2006)CrossRefGoogle Scholar
  14. 14.
    Braun, T.D., Siegel, H.J., Maciejewski, A.A., Hong, Y.: Static resource allocation for heterogeneous computing environments with tasks having dependencies, priorities, deadlines, and multiple versions. J. Parallel Distrib. Comput. 68, 1504–1516 (2008)CrossRefGoogle Scholar
  15. 15.
    Gonzalez-Castano, F., Vales-Alonso, J., Livny, M.: Condor Grid computing from mobile handheld devices. ACM SIGMOBILE Mobile Comput. Commun. Rev. 6(2), 18–27 (2002).CrossRefGoogle Scholar
  16. 16.
    Millard, D., Woukeu, A., Tao, F.B., Davis, H.: Experiences with writing Grid clients for mobile devices. In: 1st International ELeGI Conference on Advanced Technology for Enhanced Learning, 14–16 March 2005, Vico Equense, (Napoli), Italy (2005)Google Scholar
  17. 17.
    Grabowski, P., Poznan, B.L.: Access from J2me-enabled Mobile Devices to Grid Services, pp. 61–704. Supercomputing and Networking Center, Noskowskiego Poznan, PolandGoogle Scholar
  18. 18.
    Fox, G., Ho, A., Wang, R., Chu, E., Kwan, I.: A collaborative sensor Grids framework. In: IEEE CTS, pp. 29–38 (2008)Google Scholar
  19. 19.
    Robinson, J.M., Frey, J.G., Stanford-Clark, A.J., Reynolds, A.D., Bedi, B.V.: Sensor networks and Grid middleware for laboratory monitoring. In: First International Conference on e-Science and Grid Computing (e-Science’05) (2005)Google Scholar
  20. 20.
    Shah, S.C., Kashif, A., Chauhdary, S.H., Jiehui, C., Park, M.-S.: Mobile ad hoc computational Grid for low constraint devices. In: ICFCC April 2009, Kuala Lumpur, MalaysiaGoogle Scholar
  21. 21.
    Franke, H.A., Koch, F.L.: Grid-M: middleware to integrate mobile devices, sensors and Grid computing. In: Proceedings of the Third International Conference on Wireless and Mobile Communications (ICWMC’07) ©, IEEE (2007)Google Scholar
  22. 22.
    Tadeu, A., Gomes, A., et al.: DICHOTOMY: a resource discovery and scheduling protocol for multihop ad hoc mobile Grids. In: Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid’07), IEEE (2007)Google Scholar
  23. 23.
    Chu, D.C., Humphrey, M.: Mobile OGSI.NET: Grid computing on mobile devices. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, 08 November 2004. Pittsburgh, PAGoogle Scholar
  24. 24.
    Preetam, G., Nirmalya, R., Das, S.K.: Mobility-aware efficient job scheduling in mobile Grids. In: Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid’07), IEEE Press (2007)Google Scholar
  25. 25.
    Hummel, K.A., Jelleschitz, G.: Robust de-centralized job scheduling approach for mobile peers in ad hoc Grids. In: Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid’07), IEEE Computer Society (2007)Google Scholar
  26. 26.
    Selvi, V.V., Sharfraz, S., Parthasarathi, R.: Mobile ad hoc Grid using trace based mobility model. In: GPC 2007, LNCS 4459, pp 274–285 (2007)Google Scholar
  27. 27.
    Shilve, S., Siegel, H.J., Maciejewski, A.A., Sugavanam, P., Banka, T., Castain, R., Chindam, K., Dussinger, S., Pichumani, P., Satyasekaran, P., Saylor, W., Sendek, D., Sousa, J., Sridharan, J., Velazco, J.: Static allocation of resources to communicating subtasks in a heterogeneous ad hoc Grid environment. J. Parallel Distrib. Comput. 66(4), 600–611 (2006)CrossRefGoogle Scholar
  28. 28.
    Li, C., Li, L.: Utility-based scheduling for Grid computing under constraints of energy budget and deadline. Comput. Stand. Interfaces (2009). doi:10.1016/j.csi.2008.12.004 Google Scholar
  29. 29.
    Liu, H., Roeder, T., Walsh, K., Barr, R., Sirer, E.G.: Design and implementation of a single system image operating system for Ad Hoc networks. In: MobiSys ’05: Proceedings of the 3rd International Conference on Mobile systems, Applications, and Services, pp. 149–162. ISBN:1-931971-31-5 (2005)Google Scholar
  30. 30.
    El-Rewini, H., Ali, H.H., Lewis, T.: Task scheduling in multiprocessing systems. Computer 28(12), 27–37 (1995)CrossRefGoogle Scholar
  31. 31.
    Paredes, R., Navarro, G.: Practical construction of k nearest neighbor graphs in metric spaces. Technical Report TR/DCC-2005-6, Dept. of Comp. Sci. Univ.Google Scholar
  32. 32.
    Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: k-nearest neighbors in uncertain graphs. In: The Proceedings of the VLDB Endowment (PVLDB), vol. 3 (2010)Google Scholar
  33. 33.
    Callahan, P.: Optimal parallel all-nearest-neighbors using the well-separated pair decomposition. In: Proc. FOCS’93, pp. 332–340 (1993)Google Scholar
  34. 34.
    Callahan, P., Kosaraju, R.: A decomposition of multidimensional point sets with applications to k nearest neighbors and n body potential fields. JACM 42(1), 67–90 (1995)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Vaidya, P.: An O (n log n) algorithm for the all-nearest-neighbor problem. Discrete Comput. Geom. 4, 101–115 (1989)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Krunz, M., Muqattash, A., Lee, S.-J.: Transmission power control in wireless ad hoc networks: challenges, solutions, and open issues. IEEE Netw. 18(5), 8–14 (2004)Google Scholar
  37. 37.
    Kubisch, M., Karl, H., Wolisz, A., Zhong, L.C., Rabaey, J.: Distributed algorithms for transmission power control in wireless sensor networks. In: Wireless Communications and Networking (WCNC) (2003)Google Scholar
  38. 38.
    Lin, S., Zhang, J., Gu, L., He, T., Stankovic, J.: ATPC: adaptive transmission power control for wireless sensor networks. In: Proceedings of SenSys’06 (2006)Google Scholar
  39. 39.
    Kawadia, V., Kumar, P.R.: Principles and protocols for power control in Ad Hoc networks. IEEE J. Sel. Areas Commun. 1, 5–16 (2005)Google Scholar
  40. 40.
    Liu, X., Qiao, C., Wei, W., Yu, X., Wang, T., Hu, W., Guo, W., Wu, M.-Y.: Task scheduling and lightpath establishment in optical Grids. J. Lightwave Technol. 27(27), 1796–1805 (2009). doi:10.1109/JLT.2009.2020999 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations