Journal of Grid Computing

, Volume 9, Issue 1, pp 27–47 | Cite as

Joint Elastic Cloud and Virtual Network Framework for Application Performance-cost Optimization

  • Tram Truong Huu
  • Guilherme Koslovski
  • Fabienne Anhalt
  • Johan Montagnat
  • Pascale Vicat-Blanc Primet


Cloud computing infrastructures are providing resources on demand for tackling the needs of large-scale distributed applications. To adapt to the diversity of cloud infrastructures and usage, new operation tools and models are needed. Estimating the amount of resources consumed by each application in particular is a difficult problem, both for end users who aim at minimizing their costs and infrastructure providers who aim at controlling their resources allocation. Furthermore, network provision is generally not controlled on clouds. This paper describes a framework automating cloud resources allocation, deployment and application execution control. It is based on a cost estimation model taking into account both virtual network and nodes managed by the cloud. The flexible provisioning of network resources permits the optimization of applications performance and infrastructure cost reduction. Four resource allocation strategies relying on the expertise that can be captured in workflow-based applications are considered. Results of these strategies are confined virtual infrastructure descriptions that are interpreted by the HIPerNet engine responsible for allocating, reserving and configuring physical resources. The evaluation of this framework was carried out on the Aladdin/Grid’5000 testbed using a real application from the area of medical image analysis.


Cloud computing Resources allocation IaaS Workflows Network virtualization Description language 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Open Cloud Computing Interface Working Group (OCCI-WG). (2009)
  2. 2.
    Addie, R., Braithwaite, S., Zareer, A.: Netml: a language and website for collaborative work on networks and their algorithms. In: ATNAC 06 (2006)Google Scholar
  3. 3.
    Anhalt, F., Koslovski, G., Vicat-Blanc Primet, P.: Specifying and provisioning virtual infrastructures with HIPerNet. In: ACM International Journal of Network Management (IJNM)—Special Issue on Network Virtualization and its Management, vol. 20(3), pp. 129–148 (2010)Google Scholar
  4. 4.
    Bavier, A., Feamster, N., Huang, M., Peterson, L., Rexford, J.: In VINI veritas: realistic and controlled network experimentation. ACM SIGCOMM Comput. Commun. Rev. 36(4), 3–14 (2006)CrossRefGoogle Scholar
  5. 5.
    Begnum, K., Sechrest, J.: The MLN Manual—Version 1.0. (2009)
  6. 6.
    Bittencourt, L.F., Madeira, E.R.M.: Towards the scheduling of multiple workflows on computational grids. J. Grid Comput. 8(3), 419–441 (2010)CrossRefGoogle Scholar
  7. 7.
    Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task scheduling strategies for workflow-based applications in Grids. In: International Symposium on Cluster Computing and the Grid (CCGrid’05), pp. 759–767 (2005)Google Scholar
  8. 8.
    Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001)CrossRefGoogle Scholar
  9. 9.
    Crosby, S., Doyle, R., Gering, M., Gionfriddo, M., Grarup, S., Hand, S., Hapner, M., Hiltgen, D., Johanssen, M., Lamers, L.J., Leung, J., Machida, F., Maier, A., Mellor, E., Parchem, J., Pardikar, S., Schmidt, S.J., Schmidt, R.W., Warfield, A., Weitzel, M.D., Wilson, J.: Open Virtualization Format Specification (OVF). Technical Report DSP0243, Distributed Management Task Force, Inc. (2009)Google Scholar
  10. 10.
    Dang, M.Q., Altmann, J.: Resource allocation algorithm for light communication Grid-based workflows within an SLA context. Int. J. Parallel Emergent Distrib. Syst. 24(1), 31–48 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dang, M.Q., Hsu, D.F.: Mapping Heavy Communication Grid-Based Workflows Onto Grid Resources Within an SLA Context Using Metaheuristics. Int. J. High Perform. Comput. Appl. 22(3), 330–346 (2008)CrossRefGoogle Scholar
  12. 12.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A., Cavanaugh, R., Koranda, S.: Mapping abstract complex workflows onto Grid environments. J. Grid Comput. 1(1), 9–23 (2003)CrossRefGoogle Scholar
  13. 13.
    Dijkstra, F., Swany, M.: Network Mark-up Language Working Group (NML-WG). (2007)
  14. 14.
    Feamster, N., Gao, L., Rexford, J.: How to lease the internet in your spare time. SIGCOMM Comput. Commun. Rev. 37(1), 61–64 (2007)CrossRefGoogle Scholar
  15. 15.
    Glatard, T., Montagnat, J., Emsellem, D., Lingrand, D.: A service-oriented architecture enabling dynamic services grouping for optimizing distributed workflows execution. Future Gener. Comput. Syst. 24(7), 720–730 (2008)CrossRefGoogle Scholar
  16. 16.
    Glatard, T., Montagnat, J., Lingrand, D., Pennec, X.: Flexible and efficient workflow deployement of data-intensive applications on grids with MOTEUR. Int. J. High Perform. Comput. Appl. 22(3), 347–360 (2008)CrossRefGoogle Scholar
  17. 17.
    Glatard, T., Pennec, X., Montagnat, J.: Performance evaluation of grid-enabled registration algorithms using bronze-standards. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI’06) (2006)Google Scholar
  18. 18.
    Guo, W., Sun, W., Hu, W., Jin, Y.: Resource allocation strategies for data-intensive workflow-based applications in optical Grids. In: 10th IEEE Singapore International Conference on Communication Systems (IEEE ICCS 2006), pp. 1–5 (2006)Google Scholar
  19. 19.
    He, J., Zhang-Shen, R., Li, Y., Lee, C.-Y., Rexford, J., Chiang, M.: Davinci: dynamically adaptive virtual networks for a customized internet. In: CoNEXT ’08: Proceedings of the 2008 ACM CoNEXT Conference, pp. 1–12. ACM, New York (2008)Google Scholar
  20. 20.
    Huang, R., Casanova, H., Chien, A.A.: Using virtual Grids to simplify application scheduling. In: 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2006) (2006)Google Scholar
  21. 21.
    Distributed Management Task Force Inc. Common Information Model (CIM) Standards. (1999)
  22. 22.
    Jiang, X., Xu, D.: vbet: a vm-based emulation testbed. In: MoMeTools ’03: Proceedings of the ACM SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network Research, pp. 95–104. ACM, New York (2003)CrossRefGoogle Scholar
  23. 23.
    Koslovski, G., Truong Huu, T., Montagnat, J., Primet, P.V.-B.: Executing distributed applications on virtualized infrastructures specified with the VXDL language and managed by the HIPerNET framework. In: First International Conference on Cloud Computing (CLOUDCOMP 2009), Munich, Germany (2009)Google Scholar
  24. 24.
    Koslovski, G., Primet, P.V.-B., Charão, A.S.: VXDL: virtual resources and interconnection networks description language. In: GridNets 2008 (2008)Google Scholar
  25. 25.
    Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems. In: Eighth Heterogeneous Computing Workshop (HCW’99), pp. 30–44. IEEE Computer Society, San Juan, Puerto Rico (1999)CrossRefGoogle Scholar
  26. 26.
    Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-Crummey, J., Liu, B., Johnsson, L.: Scheduling strategies for mapping application workflows onto the Grid. In: 14th IEEE International Symposium on High Performance Distributed Computing (HPDC’05), pp. 125–134. IEEE Computer Society, Washington, DC, USA (2005)CrossRefGoogle Scholar
  27. 27.
    Peterson, L., Anderson, T., Blumenthal, D., Casey, D., Clark, D., Estrin, D., Evans, J., Raychaudhuri, D., Reiter, M., Rexford, J., Shenker, S., Wroclawski, J.: GENI design principles. Computer 39(9), 102–105 (2006)CrossRefGoogle Scholar
  28. 28.
    Ramakrishnan, L., Nurmi, D., Mandal, A., Koelbel, C., Gannon, D., Huang, T.M., Kee, Y.-S., Obertelli, G., Thyagaraja, K., Wolski, R., YarKhan, A., Zagorodnov, D.: VGrADS: enabling e-science workflows on grids and clouds with fault tolerance. In: International Conference for High Performance Computing, Networking, Storage and Analysis (SC09) (2009)Google Scholar
  29. 29.
    Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows with budget constraints. In: CoreGRID Integration Workshop (CGIW2005), pp. 347–357. Springer-Verlag, Pisa, Italy (2005)Google Scholar
  30. 30.
    Senkul, P., Toroslu, I.H.: An architecture for workflow scheduling under resource allocation constraints. Inf. Syst. 30(5), 399–422 (2005)CrossRefGoogle Scholar
  31. 31.
    Silva, J.N., Veiga, L., Ferreira, P.: Heuristic for resources allocation on utility computing infrastructures. In: 6th International Workshop on Middleware for Grid Computing (MGC 2008), pp. 1–6. ACM (2008)Google Scholar
  32. 32.
    Topcuoglu, H., Hariri, S., Min-You, W.: Performance-effective and low-complexity task scheduling for heterogeneous computing. Int. J. Supercomput. Appl 13(3), 260–274 (2002)Google Scholar
  33. 33.
    van der Ham, J., Grosso, P., van der Pol, R., Toonk, A., de Laat, C.: Using the network description language in optical networks. In: Proc. IFIP/IEEE IM (2007)Google Scholar
  34. 34.
    Primet, P.V.-B., Anhalt, F., Koslovski, G.: Exploring the virtual infrastructure service concept in Grid’5000. In: 20th ITC Specialist Seminar on Network Virtualization, Hoi An, Vietnam (2009)Google Scholar
  35. 35.
    Primet, P.V.-B., Roca, V., Montagnat, J., Gelas, J.-P., Mornard, O., Giraud, L., Koslovski, G., Truong Huu, T.: A scalable security model for enabling dynamic virtual private execution infrastructures on the internet. In: IEEE International Symposium on Cluster Computing and the Grid (CCGRID 2009), Shanghai, China (2009)Google Scholar
  36. 36.
    Xiao, Z., Chang, H., Yi, Y. (2007) Optimization of Workflow Resources Allocation with Cost Constraint, pp. 647–656. Springer, Berlin/HeidelbergGoogle Scholar
  37. 37.
    Yu, J., Buyya, R.: A taxonomy of workflow management systems for Grid computing. J. Grid Comput. 3(3–4), 171 – 200 (2005)CrossRefGoogle Scholar
  38. 38.
    Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow application on utility Grids. In: First International Conference on e-Science and Grid Computing (E-SCIENCE’05), pp. 140–147. IEEE Computer Society, Melbourne, Australia (2005)Google Scholar
  39. 39.
    Zhao, H., Sakellariou, R.: Scheduling multiple DAGs onto heterogeneous systems. In: 15th Heterogeneous Computing Workshop (HCW 2006), Rhodes Island, Greece (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tram Truong Huu
    • 1
  • Guilherme Koslovski
    • 2
  • Fabienne Anhalt
    • 2
  • Johan Montagnat
    • 3
  • Pascale Vicat-Blanc Primet
    • 2
  1. 1.I3S LaboratoryUniversity of Nice - Sophia AntipolisSophia Antipolis CedexFrance
  2. 2.INRIA - University of LyonLyonFrance
  3. 3.CNRS - I3S LaboratorySophia Antipolis CedexFrance

Personalised recommendations