Journal of Grid Computing

, Volume 8, Issue 4, pp 493–510 | Cite as

Negotiation-Based Scheduling of Scientific Grid Workflows Through Advance Reservations

Article

Abstract

In its broadest sense, scheduling of Grid applications can be viewed as a negotiation process between a scheduling service optimising user-centric objectives such as execution time, and a resource manager optimising provider-centric metrics such as resource utilisation or fairness. In this paper we enhance an existing list scheduling algorithm designed for minimising the workflow makespan with advance reservation-based negotiation functionality. As an instantiation of the new negotiation phase, we investigate two advance reservation functionality from the resource provider perspective: attentive and progressive. We illustrate through real-world experiments a two-fold benefit of our approach: improved execution predictability from the user’s perspective, and higher resource utilisation fairness through a new progressive allocation strategy from the provider’s perspective.

Keywords

Scheduling Resource management Negotiation Advance reservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aida, K., Casanova, H.: Scheduling mixed-parallel applications with advance reservations. In: 17th International Symposium on High Performance Distributed Computing. IEEE Computer Society Press, CA (2008)Google Scholar
  2. 2.
    Dumitrescu, C.L., Raicu, I., Foster, I.: The design, usage, and performance of GRUBER: a Grid usage service level agreement based brokering infrastructure. J. Grid Computing 5(1), 99–126 (2007)CrossRefGoogle Scholar
  3. 3.
    Elmroth, E., Tordsson, J.: A Grid resource broker supporting advance reservations and benchmark-based resource selection. In: State-of-the-art in Scientific Computing. LNCS, vol. 3732, pp. 1077–1085. Springer, Berlin (2005)Google Scholar
  4. 4.
    Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri, F., Stefan Podlipnig, J.Q., Siddiqui, M., Truong, H.L., Villazon, A., Wieczorek, M.: Askalon: a development and Grid computing environment for scientific workflows. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Scientific Workflows for Grids, Workflows for e-Science, Frameworks and Tools: Workflow Generation, Refinement and Execution, pp. 450–471. Springer, Berlin (2007)Google Scholar
  5. 5.
    Fahringer, T., Qin, J., Hainzer, S.: Specification of Grid workflow applications with AGWL: an abstract Grid workflow language. In: International Symposium on Cluster Computing and the Grid. IEEE Computer Society Press, CA (2005)Google Scholar
  6. 6.
    Foster, I., Kesselman, C.: Globus: a metacomputing infrastructure toolkit. Int. J. Supercomput. Appl. High Perform. Comput. 11(2), 115–128 (1997)CrossRefGoogle Scholar
  7. 7.
    Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K., Roy, A.: A distributed resource management architecture that supports advance reservations and co-allocation. In: International Workshop on Quality of Service, pp. 27–36. IEEE Computer Society Press, CA (1999)Google Scholar
  8. 8.
    Hudert, S., Ludwig, H., Wirtz, G.: Negotiating SLAs—an approach for a generic negotiation framework for WS-Agreement. J. Grid Computing 7(2), 225–246 (2009)CrossRefGoogle Scholar
  9. 9.
    Kennedy, K., Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A.: Task scheduling strategies for task scheduling strategies for workflow-based applications in Grids. IEEE Computer Society Press, CA (2005)Google Scholar
  10. 10.
    McGough, A.S., Afzal, A., Darlington, J., Furmento, N., Mayer, A., Young, L.: Making the Grid predictable through reservation and performance modelling. Comput. J. 48(3), 358–368 (2005)CrossRefGoogle Scholar
  11. 11.
    Nadeem, F., Yousaf, M., Prodan, R., Fahringer, T.: Soft benchmarks-based application performance prediction using a minimum training set. In: International Conference on e Science and Grid Computing. IEEE Computer Society Press, CA (2006)Google Scholar
  12. 12.
    Prodan, R., Fahringer, T.: Dynamic scheduling of scientific workflow applications on the Grid using a modular optimisation tool: a case study. In: 20th Symposion of Applied Computing. ACM, New York (2005)Google Scholar
  13. 13.
    Prodan, R., Fahringer, T.: Grid computing. Experiment Management, Tool Integration, and Scientific Grid Workflows. LNCS, Scientific Grid Workflows, vol. 4340, chap. 317, pp. 203–269. Springer, Berlin (2007)Google Scholar
  14. 14.
    Prodan, R., Fahringer, T.: Overhead analysis of scientific workflows in Grid environments. IEEE Trans. Parallel Distrib. Syst. 19(3), 378–393 (2008)CrossRefGoogle Scholar
  15. 15.
    Pugliese, A., Talia, D., Yahyapour, R.: Modeling and supporting Grid scheduling. J. Grid Computing 6(2), 195–213 (2008)CrossRefGoogle Scholar
  16. 16.
    Röblitz, T., Reinefeld, A.: Co-reservation with the concept of virtual resources. In: International Conference on Cluster Computing and the Grid, pp. 398–406. IEEE Computer Society Press, CA (2005)Google Scholar
  17. 17.
    Schwarz, K., Blaha, P., Madsen, G.K.H.: Electronic structure calculations of solids using the wien2k package for material sciences. Comput. Phys. Commun. 147(71) (2002)Google Scholar
  18. 18.
    Siddiqui, M., Villazón, A., Fahringer, T.: Grid capacity planning with negotiation-based advance reservation for optimized qos. In: Supercomputing Conference, p. 103. ACM, New York (2006)Google Scholar
  19. 19.
    Singh, G., Kesselman, C., Deelman, E.: Application-level resource provisioning on the Grid. In: 2nd International Conference on e-Science and Grid Computing, p. 83. IEEE Computer Society Press, CA (2006)Google Scholar
  20. 20.
    Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13, 260–274 (2002)CrossRefGoogle Scholar
  21. 21.
    Volkert, J.: Austrian Grid: overview on the project with focus on parallel applications. In: International Symposium on Parallel and Distributed Computing, p. 14. Timisoara, Romania (2006)CrossRefGoogle Scholar
  22. 22.
    Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of scientific workflows in the ASKALON Grid environment. Special issue on scientific workflows. SIGMOD Rec. 34(3), 56–62 (2005)CrossRefGoogle Scholar
  23. 23.
    Wieczorek, M., Prodan, R., Fahringer, T.: Comparison of workflow scheduling strategies on the Grid. In: International Conference on Parallel Processing and Applied Mathematics. LNCS, vol. 3911, pp. 792–800. Springer, Berlin (2006)CrossRefGoogle Scholar
  24. 24.
    Zhao, H., Sakellariou, R.: Advance reservation policies for workflows. In: 12th International Workshop on Job Scheduling Strategies for Parallel Processing. LNCS, vol. 4376, pp. 47–67. Springer (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.Google Poland Ltd.KrakówPoland

Personalised recommendations