Journal of Grid Computing

, Volume 8, Issue 3, pp 443–471 | Cite as

Parallel SAT Solving on Peer-to-Peer Desktop Grids



Satciety is a distributed parallel satisfiability (SAT) solver which focuses on tackling the domain-specific problems inherent to one of the most challenging environments for parallel computing—Peer-to-Peer Desktop Grids. Satciety efficiently addresses issues related to resource volatility and heterogeneity, limited node and network capabilities, as well as non-uniform communication costs. This is achieved through a sophisticated distributed task pool execution model, problem size reduction through multi-stage SAT formula preprocessing, context-aware memory management, and adaptive topology-aware distributed dynamic learning. Despite the demanding conditions prevailing in Desktop Grids, Satciety achieves considerable speedups compared to state-of-the-art sequential SAT solvers.


SAT Solving Desktop Grid Peer-to-Peer Distributed systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer computing. In: Proc. of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2006), pp. 73–80. Singapore (2006)Google Scholar
  2. 2.
    Kondo, D., Taufer, M., Brooks, C.L., Casanova, H., Chien, A.A.: Characterizing and evaluating desktop Grids: an empirical study. In: Proc. of International Parallel and Distributed Processing Symposium. Sante Fe, New Mexico (2004)Google Scholar
  3. 3.
    Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: architecture and performance of an enterprise desktop Grid system. J. Parallel Distrib. Comput. 63, 597–610 (2003)CrossRefGoogle Scholar
  4. 4.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: 5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10. Pittsburgh, USA (2004)Google Scholar
  5. 5.
    Bhagwan, R., Savage, S., Voelker, G.: Understanding availability. In: Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), pp. 256–267 (2003)Google Scholar
  6. 6.
    Wolski, R., Spring, N., Hayes, J.: Predicting the cpu availability of time-shared unix systems on the computational Grid. In: Proc. of the the Eighth IEEE International Symposium on High Performance Distributed Computing, pp. 105–112. Washington, DC, USA (1999)Google Scholar
  7. 7.
    Verbeke, J., Nadgir, N., Ruetsch, G., Sharapov, I.: Framework for peer-to-peer distributed computing in a heterogeneous, decentralized environment. In: Proceedings of the Third International Workshop on Grid Computing (GRID ’02), London, UK, pp. 1–12. Springer (2002)Google Scholar
  8. 8.
    Tanaka, Y., Shudo, K., Sekiguchi, S.: P3: P2P-based middleware enabling transfer and aggregation of computational resources. In: Proc. Cluster Computing and Grid 2005 (Fifth Int’l Workshop on Global and Peer-to-Peer Computing). Cardiff, UK (2005)Google Scholar
  9. 9.
    Schulz, S., Blochinger, W., Held, M., Dangelmayr, C.: COHESION—A microkernel based desktop Grid platform for irregular task-parallel applications. Future Gener. Comput. Syst. (The International Journal of Grid Computing: Theory, Methods and Applications) 24(5), 354–370 (2008)Google Scholar
  10. 10.
    Cook, S.A.: The complexity of theorem proving procedures. In: 3rd Symp. on Theory of Computing, pp. 151–158. ACM Press (1971)Google Scholar
  11. 11.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Tools and Algorithms for the Analysis and Construction of Systems (TACAS’99). LNCS, vol. 1579. Springer (1999)Google Scholar
  12. 12.
    Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. In: Proc. of the 38th Conference on Design Automation Conference (2001)Google Scholar
  13. 13.
    Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.: Combinational test pattern generation using satisfiability. IEEE Trans. Computer-Aided Design 15(9), 1167–1176 (1996)CrossRefGoogle Scholar
  14. 14.
    Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proc. of the Tenth European Conference on Artificial Intelligence (ECAI’92), pp. 359–363 (1992)Google Scholar
  15. 15.
    Crawford, J.M., Baker, A.B.: Experimental results on the application of satisfiability algorithms to scheduling problems. In: Proc. of the Twelfth National Conference on Artificial Intelligence (AAAI-94), Seattle, Washington, vol. 2, pp. 1092–1097. AAAI Press/MIT Press (1994)Google Scholar
  16. 16.
    Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom. Reason. 24(1–2), 165–203 (2000)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Marques-Silva, J.P., Sakallah, K.A.: Grasp—a new search algorithm for satisfiability. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 220–227 (1996)Google Scholar
  20. 20.
    Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Proc. of 8th International Conference on Computer Aided Deduction (CADE 2002). Copenhagen, Denmark (2002)Google Scholar
  21. 21.
    Mitchell, D.G.: A SAT solver primer. EATCS Bulletin 85, 112–133 (2005)MATHGoogle Scholar
  22. 22.
    Hooker, J.N., Vinay, V.: Branching rules for satisfiability. J. Autom. Reason. 15(3), 359–383 (1995)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proc. of the 38th Design Automation Conference, pp. 530–535. Las Vegas (2001)Google Scholar
  24. 24.
    Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a boolean satisfiability solver. In: Proc. of ICCAD. San Jose, CA (2001)Google Scholar
  25. 25.
    Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Addison-Wesley (2003)Google Scholar
  26. 26.
    Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover and its application to quasigroup problems. J. Symb. Comput. 21, 543–560 (1996)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Blochinger, W., Westje, W., Küchlin, W., Wedeniwski, S.: ZetaSAT—Boolean satisfiability solving on desktop Grids. In: Proc. of the Fifth IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2005), vol. 2, pp. 1079–1086. Cardiff, UK (2005)Google Scholar
  28. 28.
    Chrabakh, W., Wolski, R.: GridSAT: a Chaff-based distributed SAT solver for the Grid. In: Proc. of Supercomputing 03. Phoenix, Arizona, USA (2003)Google Scholar
  29. 29.
    Jurkowiak, B., Li, C.M., Utard, G.: A parallelization scheme based on work stealing for a class of SAT solvers. J. Autom. Reason. 34(1), 73–101 (2005)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Blochinger, W., Dangelmayr, C., Schulz, S.: Aspect-oriented parallel discrete optimization on the Cohesion desktop Grid platform. In: Proc. of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2006), pp. 49–56. Singapore (2006)Google Scholar
  31. 31.
    Schulz, S., Blochinger, W., Hannak, H.: Capability-aware information aggregation in peer-to-peer Grids—methods, architecture, and implementation. Journal of Grid Computing 7(2), 135–167 (2009)CrossRefGoogle Scholar
  32. 32.
    Ganesh, A.J., Kermarrec, A.-M., Massoulié, L.: Peer-to-Peer membership management for gossip-based protocols. IEEE Trans. Comput. 52(2), 139–149 (2003)CrossRefGoogle Scholar
  33. 33.
    Schulz, S., Blochinger, W., Poths, M.: Orbweb—a network substrate for peer-to-peer Grid computing based on open standards. Journal of Grid Computing 8(1), 77–107 (2010)CrossRefGoogle Scholar
  34. 34.
    The XMPP Software Foundation: Last accessed: March 2010
  35. 35.
    Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J. ACM 46(5), 720–748 (1999)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Matocha, J., Camp, T.: A taxonomy of distributed termination detection algorithms. J. Syst. Softw. 43(3), 207–221 (1998)CrossRefGoogle Scholar
  38. 38.
    DeMara, R.F., Tseng, Y., Ejnioui, A.: Tiered algorithm for distributed process quiescence and termination detection. IEEE Trans. Parallel Distrib. Syst. 18(11), 1529–1538 (2007)CrossRefGoogle Scholar
  39. 39.
    Dhamdhere, D.M., Iyer, S.R., Reddy, E.K.K.: Distributed termination detection for dynamic systems. Parallel Comput. 22(14), 2025–2045 (1997)MATHCrossRefGoogle Scholar
  40. 40.
    Stupp, G.: Stateless termination detection. In: DISC ’02: Proceedings of the 16th International Conference on Distributed Computing, London, UK, pp. 163–172. Springer (2002)Google Scholar
  41. 41.
    Mittal, N., Venkatesan, S., Peri, S.: Message-optimal and latency-optimal termination detection algorithms for arbitrary topologies. In: Proc. 18th Ann. Conf. Distributed Computing (DISC ’04) (2004)Google Scholar
  42. 42.
    Xu, C., Lau, F.C.M.: Efficient termination detection for loosely synchronous applications in multicomputers. IEEE Trans. Parallel Distrib. Syst. 7(5), 537–544 (1996)CrossRefGoogle Scholar
  43. 43.
    Cohen, S., Lehmann, D.: Dynamic systems and their distributed termination. In: PODC ’82: Proceedings of the First ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, New York, NY, USA, pp. 29–33. ACM (1982)Google Scholar
  44. 44.
    Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations. Inf. Process. Lett. 11(1), 1–4 (1980)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Misra, J., Chandy, K.M.: Termination detection of diffusing computations in communicating sequential processes. ACM Trans. Program. Lang. Syst. 4(1), 37–43 (1982)MATHCrossRefGoogle Scholar
  46. 46.
    Lai, T.-H.: Termination detection for dynamically distributed systems with non-first-in-first-out communication. J. Parallel Distrib. Comput. 3(4), 577–599 (1986)CrossRefGoogle Scholar
  47. 47.
    Mattern, F.: Global quiescence detection based on credit distribution and recovery. Inf. Process. Lett. 30(4), 195–200 (1989)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) Theory and Applications of Satisfiability Testing: 6th International Conference, SAT 2003. LNCS, vol. 2919, pp. 502—518. Santa Margherita Ligure, Italy. Springer (2003)Google Scholar
  49. 49.
    Chrabakh, W., Wolski, R.: Gridsat: a system for solving satisfiability problems using a computational Grid. Parallel Comput. 32(9), 660–687 (2006)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Incorporating learning in Grid-based randomized SAT solving. In: Proceedings of the 13th International Conference on Artificial Intelligence: Methodology, Systems, and Applications, pp. 247–261. Varna, Bulgaria (2008)Google Scholar
  51. 51.
    Satisfiability—suggested format, May 1993. Last accessed: March 2010
  52. 52.
    The SAT Competition 2007 website. Last accessed: March 2010
  53. 53.
    The SAT Race 2008 website. Last accessed: March 2010
  54. 54.
    Anbulagan, Slaney, J.: Multiple preprocessing for systematic SAT solvers. In: Proceedings of the 6th International Workshop on the Implementation of Logics. Phnom Penh, Cambodia (2006)Google Scholar
  55. 55.
    Eén, N., Biere, A.: Effective preprocessing in sat through variable and clause elimination. In: Proc. 8th Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT’05). Lecture Notes in Computer Science (LNCS), vol. 3569. Springer (2005)Google Scholar
  56. 56.
    Bittorrent: Last accessed: March 2010
  57. 57.
    Liao, W.-C., Papadopoulos, F., Psounis, K.: Performance analysis of BitTorrent-like systems with heterogeneous users. Perform. Eval. 64(9–12), 876–891 (2007)CrossRefGoogle Scholar
  58. 58.
    Spring, N., Peterson, L., Bavier, A., Pai, V.: Using planetlab for network research: myths, realities, and best practices. ACM SIGOPS Oper. Syst. Rev. 40(1), 17–24 (2006)CrossRefGoogle Scholar
  59. 59.
    Wolski, R., Nurmi, D., Brevik, J.: An analysis of availability distributions in Condor. In: Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pp. 1–6 (2007)Google Scholar
  60. 60.
    Blochinger, W.: Towards robustness in parallel SAT solving. In: Parallel Computing: Current & Future Issues of High-End Computing (Proc. of the International Conference ParCo 2005). Malaga, Spain (2006)Google Scholar
  61. 61.
    Rasterbar Software website. Last accessed: March 2010
  62. 62.
    SAT Competition. Last accessed: March 2010
  63. 63.
    Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Büning, H.K., Zhao, X. (eds.) SAT. Lecture Notes in Computer Science, vol. 4996, pp. 28–33. Springer (2008)Google Scholar
  64. 64.
    Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel multithreaded satisfiability solver: design and implementation. In: 3rd International Workshop on Parallel and Distributed Methods in Verification (PDMC 2004). London, UK (2004)Google Scholar
  65. 65.
    Singer, D., Vagner, A.: Parallel resolution of the satisfiability problem (SAT) with openmp and mpi. In: 6th International Conference on Parallel Processing and Applied Mathematics, PPAM 2005, pp. 380–388 (2005)Google Scholar
  66. 66.
    Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT solving. In: 12th Asia and South Pacific Design Automation Conference, pp. 926–931 (2007)Google Scholar
  67. 67.
    Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. Journal on Satisfiability, Boolean Modeling and Computation 6, 245–262 (2009)Google Scholar
  68. 68.
    Boehm, M., Speckenmeyer, E.: A fast parallel SAT-solver—efficient workload balancing. Ann. Math. Artif. Intell. 17(3–4), 381–400 (1996)MATHCrossRefGoogle Scholar
  69. 69.
    Schubert, T., Lewis, M., Becker, B.: PaMiraXT: parallel SAT solving with threads and message passing. Journal on Satisfiability, Boolean Modeling and Computation 6, 203–222 (2009)MATHGoogle Scholar
  70. 70.
    Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability checking with distributed dynamic learning. Parallel Comput. 29(7), 969–994 (2003)CrossRefGoogle Scholar
  71. 71.
    Chrabakh, W., Wolski, R.: Gridsat: design and implementation of a computational Grid application. Journal of Grid Computing 5(2), 177–193 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Parallel and Distributed SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations