Journal of Grid Computing

, Volume 8, Issue 2, pp 261–279 | Cite as

Practical Experience from Porting and Executing the Wien2k Application on the EGEE Production Grid Infrastructure



While the Grid promises to deliver a large number of computation nodes to a user, this computation power is not usable without the proper adaption of the application for the Grid. In this paper, we describe the methods used to port and execute a particular application, Wien2k, on the EGEE production Grid. First, the process of porting the application is described. Then, we investigate the measures necessary to execute the application in this production Grid environment efficiently. Although the focus is on this special application, we describe generic methods which can be applied to all applications. We specifically address: Creating a workflow from an application and mapping this workflow to a Grid workflow using the activity attraction pattern. We discuss workflow engines which support cycles in their application workflow. We investigate naïve and worker scheduling techniques. A short introduction into licensing on the Grid is given. Optimisation techniques such as deployment re-use are discussed. Different data transfer mechanisms, centralised data transfer, data re-use, storage element data transfer, and peer-to-peer data transfer are compared. The paper is concluded with suggestions for further workflow porting.


Grid Workflow Wien2k Worker Pilot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aloisio, G., Cafaro, M., Fiore, S., Mirto, M.: ProGenGrid: a workflow service infrastructure for composing and executing bioinformatics Grid services. In: Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems, 2005, pp. 555–560 (2005)Google Scholar
  2. 2.
    Andreetto, P., Borgia, S., Dorigo, A., Gianelle, A., Mordacchini, M., Sgaravatto, M., Zangrando, L., Andreozzi, S., Ciaschini, V., Giusto, C., et al.: Practical approaches to Grid workload and resource management in the EGEE project. In: Proceedings of the International Conference on Computing in High Energy Physics (CHEP2004), Interlaken, Switzerland (2004)Google Scholar
  3. 3.
    Austrian Grid. Accessed Aug 2009
  4. 4.
    Berger, M., Zangerl, T., Fahringer, T.: Analysis of overhead and waiting time in the EGEE production Grid. In: Proceedings of the Cracow Grid Workshop 2008, pp. 287–294 (2009). Accessed Aug 2009
  5. 5.
    Cafaro, M., Epicoco, I., Mirto, M., Lezzi, D., Aloisio, G.: The Grid resource brokerWorkflow engine. In: Sixth International Conference on Grid and Cooperative Computing, 2007. GCC 2007, pp. 725–732 (2007)Google Scholar
  6. 6.
    Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The data Grid: towards an architecture for the distributed management and analysis of large scientific datasets. J. Netw. Comput. Appl. 23(3), 187–200 (2000)CrossRefGoogle Scholar
  7. 7.
    Churches, D., Gombás, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., Taylor, I.J., Wang, I.: Programming scientific and distributed workflow with Triana services. Concurrency Comput Pract Ex 18(10), 1021–1037 (2006)CrossRefGoogle Scholar
  8. 8.
    Enabling Grids for E-sciencE (EGEE). Accessed Aug 2009
  9. 9.
    Foster, I., Kesselman, C.: The Grid 2: blueprint for a new computing infrastructure, 2nd edn. Morgan Kaufmann, San Francisco (2004)Google Scholar
  10. 10.
    Glatard, T., Montagnat, J., Lingrand, D., Pennec, X.: Flexible and efficient workflow deployment of data-intensive applications on Grids with MOTEUR. Int. J. High Perform. Comput. Appl. 22(3), 347 (2008)CrossRefGoogle Scholar
  11. 11.
    Glatard, T., Pennec, X.: Optimizing jobs timeouts on clusters and production Grids. In: CCGRID, pp. 100–107. IEEE Computer Society, Washington, DC (2007)Google Scholar
  12. 12.
    Goulas, G., Alefragis, P., Houses, E.: SchedSP-WS: adaptation of an application service platform for scheduling solutions to Web services and Grid standards. In: Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005, pp. 94–98 (2005)Google Scholar
  13. 13.
    Kasam, V.K., Salzemann, J., Breton, V., Jacq, N.: Wisdom-II: a large in silico docking effort for finding novel hits against malaria using computational Grid infrastructure. In: CLADE ’07: Proceedings of the 5th IEEE Workshop on Challenges of Large Applications in Distributed Environments, pp. 27–34. ACM, New York (2007). doi: 10.1145/1273404.1273407 Google Scholar
  14. 14.
    Kukla, T., Kiss, T., Terstyanszky, G., Kacsuk, P.: A general and scalable solution for heterogeneous workflow invocation and nesting. In: Third Workshop on Workflows in Support of Large-Scale Science, 2008. WORKS 2008, pp. 1–8 (2008)Google Scholar
  15. 15.
    Laure, E., Fisher, S., Frohner, A., Grandi, C., Kunszt, P., Krenek, A., Mulmo, O., Pacini, F., Prelz, F., White, J., et al.: Programming the Grid with gLite. Comput. Methods Sci. Technol. 12(1), 33–45 (2006)Google Scholar
  16. 16.
    Maier, A., Brochu, F., Egede, U., Elmsheuser, J., Gaidioz, B., Harrison, K., Koblitz, B.K., Lee, H., Liko, D., Moscicki, J., Muraru, A., Romanovsky, V., Soroko, A., Tan, C.: Ganga—an optimiser and front-end for Grid job submission. In: Second EGEE User Forum (2007)Google Scholar
  17. 17.
    Mair, G.M.: Replica location service to support file management in a Grid workfow application. Master’s thesis, FH Oberösterreich (2004)Google Scholar
  18. 18.
    Matyska, L., Kenek, A., Ruda, M., Kouil, D., Voc, M., Pospil, J., Mula, M., Salvet, Z.: Job tracking on a Grid—the logging and bookkeeping and job provenance services. Tech. rep., Cesnet (2007)Google Scholar
  19. 19.
    Montagnat, J., Gaignard, A., Lingrand, D., Balderrama, J., Collet, P., Lahire, P.: NeuroLOG: a community-driven middleware design. Stud. Health Technol. Inform. 138, 49 (2008)Google Scholar
  20. 20.
    Moscicki, J.: Efficient job handling in the Grid: short deadline, interactivity, fault tolerance and parallelism. In: EGEE User Forum (2006)Google Scholar
  21. 21.
    Mościcki, J., Brochu, F., Ebke, J., Egede, U., Elmsheuser, J., Harrison, K., Jones, R., Lee, H., Liko, D., Maier, A., et al.: Ganga: a tool for computational-task management and easy access to Grid resources. Comput. Phys. Commun. 180(11), 2303–2316 (2009)CrossRefGoogle Scholar
  22. 22.
    Oinn, T.M., Greenwood, R.M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble, C.A., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P.W., Pocock, M.R., Senger, M., Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment for the life sciences. Concurrency Comput Pract Ex 18(10), 1067–1100 (2006)CrossRefGoogle Scholar
  23. 23.
    Pellegrini, S., Giacomini, F., Ghiselli, A.: A practical approach for a workflow management system. In: CoreGRID Workshop on Grid Middleware. Springer, Dresden (2007)Google Scholar
  24. 24.
    Pernod, E., Souplet, J., Balderrama, J., Lingrand, D., Pennec, X.: Multiple sclerosis brain MRI segmentation workflow deployment on the EGEE Grid. In: MICCAI-Grid Workshop (MICCAI-Grid), New York, NY, USA (2008)Google Scholar
  25. 25.
    Schwarz, K., Blaha, P.: Rules for non-commercial computing centers. Accessed Aug 2009
  26. 26.
    Schwarz, K., Blaha, P.: Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259 (2003)CrossRefGoogle Scholar
  27. 27.
    Sterzel, M.: A brief info how to use Gaussian program package. Accessed Aug 2009
  28. 28.
    TRAN, D.: Workflow management with agent-scheduling support. Cracow 8, 978–83 (2008)Google Scholar
  29. 29.
    Wieczorek, M., Prodan, R., Fahringer, T.: Comparison of workflow scheduling strategies on the Grid. Lect. Notes Comput. Sci. 3911, 792 (2006)CrossRefGoogle Scholar
  30. 30.
    WMS-X: Accessed Aug 2009

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Distributed and Parallel Systems, Institute for Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations