Advertisement

Journal of Grid Computing

, Volume 6, Issue 1, pp 15–27 | Cite as

Scheduling for Responsive Grids

  • Cécile Germain-Renaud
  • Charles Loomis
  • Jakub T. MościckiEmail author
  • Romain Texier
Article

Abstract

Grids are facing the challenge of seamless integration of the Grid power into everyday use. One critical component for this integration is responsiveness, the capacity to support on-demand computing and interactivity. Grid sched uling is involved at two levels in order to provide responsiveness: the policy level and the implementation level. The main contributions of this paper are as follows. First, we present a detailed analysis of the performance of the EGEE Grid with respect to responsiveness. Second, we examine two user-level schedulers located between the general scheduling layer and the application layer. These are the DIANE (distributed analysis environment) framework, a general-purpose overlay system, and a specialized, embedded scheduler for gPTM3D, an interactive medical image analysis application. Finally, we define and demonstrate a virtualization scheme, which achieves guaranteed turnaround time, schedulability analysis, and provides the basis for differentiated services. Both methods target a brokering-based system organized as a federation of batch-scheduled clusters, and an EGEE implementation is described.

Keywords

Responsiveness Interactive Grids Meta-scheduler User-level scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atlas Computing—Technical design report CERN-LHCC-2005-022. http://doc.cern.ch//archive/electronic/cern/preprints/lhcc/public/lhcc-2005-022.pdf
  2. 2.
    AlAli, R., Amin, K., von Laszewski, G., Rana, O., Walker, D., Hategan, M., Zaluzec, N.: Analysis and provision of Qos for distributed Grid applications. J. Grid Comput. 2(2), 163–182 (June 2004)CrossRefGoogle Scholar
  3. 3.
    Andreetto, P., et al.: Practical approaches to Grid workload and resource management in the EGEE Grid. In: Procs. of the Computing in High Energy and Nuclear Physics (CHEP). Interlaken, Switzerland (2004)Google Scholar
  4. 4.
    Andreozzi, S., et al.: GLUE schema specification version 1.2. http://infnforge.cnaf.infn.it/glueinfomodel/
  5. 5.
    Baruah, S., Cohen, N., Plaxton, C., Varvel, D.: Proportionate progress: a notion of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Basu, S., Talwar, V., Agarwalla, B., Kuma, R.: Interactive Grid architecture for application service providers. HP Technical Report HPL-2003-84R1. (2003)Google Scholar
  7. 7.
    Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson, L., Roscoe, T., Spalink, T., Wawrzoniak, M.: Operating system support for planetary-scale network services. In: Proceedings of the First Symposium on Networked Systems Design and Implementation, NSDI, pp. 253–266 (2004)Google Scholar
  8. 8.
    Berman, F., Wolski, R., Casanova, H.: Adaptive computing on the Grid using apples. IEEE Trans. Parallel Dist. Syst. 14(4), 369–382 (2003)CrossRefGoogle Scholar
  9. 9.
    Shao, G., Wolski, R., Berman, F.: Master/slave computing on the Grid. In Proceedings of the 9th Heterogeneous Computing Workshop, Cancun, Mexico, pp. 3–16, May 2000. http://citeseer.ist.psu.edu/wolski00masterslave.html
  10. 10.
    Morris, G.M., et al.: Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)CrossRefGoogle Scholar
  11. 11.
    Berry, D., Germain-Renaud, C., Hill, D., Pieper, S. Saltz, J.: Report on the Workshop IMAGE’03: images, medical analysis and Grid environments. TR UKeS-2004-02, UK National e-Science Centre, Feb 2004Google Scholar
  12. 12.
    Blanchet, C., et al.: GPSA: bioinformatics Grid portal for protein sequence analysis on EGEE Grid. In: Procs. of HealthGrid 2006, Studies in Health Technology and Informatics 120, IOS Press, May 2006Google Scholar
  13. 13.
    Brevik, J., Nurmi, D., Wolski, R.: Predicting bounds on queuing delay for batch-scheduled parallel machines. In Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming (PPoPP ’06) pp. 110–118 (2006)Google Scholar
  14. 14.
    Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The apples parameter sweep template: user-level middleware for the Grid. In Proceedings 2000 ACM/IEEE conference on Supercomputing SC’00 (2000)Google Scholar
  15. 15.
    Chandra, A., Adler, M., Shenoy, P.: Deadline fair scheduling: bridging the theory and practice of proportionate-fair scheduling in multiprocessor servers. In: Proceedings of the 7th IEEE Real-Time Technology and Applications Symposium. June 2001Google Scholar
  16. 16.
    Dinda, P.: Design implementation, and performance of an extensible toolkit for resource prediction in distributed systems. IEEE Trans. Parallel Dist. Syst. 17(2) (2006)Google Scholar
  17. 17.
    Epema, D.H.J., Livny, M., van Dantzig, R., Evers, X., Pruyne, J.: A worldwide flock of Condors: load sharing among workstation clusters. Future Generation Comput. Syst. 12, 53–65 (1996)CrossRefGoogle Scholar
  18. 18.
    Feitelson, D.G., Jette, M.: Improved utilization and responsiveness with gang scheduling. In: Proceedings of the IPPS ’97 Workshop on Job Scheduling Strategies for Parallel Processing (1997)Google Scholar
  19. 19.
    Foster, I., Fidler, M., Roy, A., Sander, V., Winkler, L.: End-to-end quality of service for high-end applications. Comput. Commun. 27(14), 1375–1388 (2004)CrossRefGoogle Scholar
  20. 20.
    Glatard, T., Montagnat, J., Pennec, X.: Efficient services composition for Grid-enabled data-intensive applications. In: Proceedings of the IEEE Int. Symp. on High Performance Distributed Computing (HPDC’06), June 2006Google Scholar
  21. 21.
    Germain-Renaud, C., Texier, R., Osorio, A.: Interactive reconstruction and measurement on the Grid. Methods Inf. Medicine 44(2), 227–232 (2005)Google Scholar
  22. 22.
    Pia, M.G., et al.: Geant4 simulation in a distributed computing environment. Computing in High Energy Nuclear Physics, 13–17 February 2006, T.I.F.R., Mumbai, India. http://indico.cern.ch/contributionDisplay.py?contribId=304&sessionId=8&confId=048
  23. 23.
    Hastings, S., Kurc, M., Langella, S., Catalyurek, U.V., Pan, T.C., Saltz, J.H.: Image processing for the Grid: a toolkit for building Grid-enabled image processing applications. In Proc. 3rd Int. Symp. on Cluster Computing and the Grid, pp. 36–43 (2003)Google Scholar
  24. 24.
    Heinzlreiter, P., Kranzlmller, D.: Visualization services on the Grid: the Grid visualization kernel. Parallel Process. Lett. 13(2), 135–148 (2003)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Heymann, E., Senar, M.A., Luque, E., Livny, M.: Adaptive scheduling for master-worker applications on the computational Grid. In Proceedings 1st IEEE/ACM Intl Workshop on Grid Computing (GRID 2000) (2000)Google Scholar
  26. 26.
    Kumar, R., Talwar, V., Basu, S.: A resource management framework for interactive Grids. Concurrency Comput: Prac. Exp. 16(5), 489–50 (April 2004)CrossRefGoogle Scholar
  27. 27.
    Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual workspaces: achieving quality of service and quality of life in the Grid. To appear in The Scientific Program. J. (2006)Google Scholar
  28. 28.
    von Laszewski, G., Hategan, M., Kodeboyina, D.: Work coordination for Grid computing. http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-work-coordination.pdf, (2007) (in press)
  29. 29.
    Lee, H.-C., et al.: Grid-enabled High throughput in Silico Screening Against Influenza A Neuraminidase. Nanobioscience, IEEE Trans. 5(4), 288–295 (December 2006) doi: 10.1109/TNB.2006.887943
  30. 30.
    Lin, B., Dinda, P.A.: VSched: mixing batch And interactive virtual machines using periodic real-time scheduling. In: Proceedings ACM/IEEE conference on Supercomputing 2005 (SC’05) (2005)Google Scholar
  31. 31.
    Lin, B., Dinda, P.A., Lu, D.: User-driven scheduling of interactive virtual machines. In: Proceedings of the Fifth IEEE/ACM Int. Workshop on Grid Computing (GRID’04), pp. 380–387 (2004)Google Scholar
  32. 32.
    Manara, A., et al.: International Telecommunication Union Regional Radio Conference and the EGEE Grid; EGEE User Forum. Geneva, Switzerland, 1–3 March 2006. http://indico.cern.ch/contributionDisplay.py?contribId=34&sessionId=11&confId=286; EGEE Press Release: EGEE ITU challenge: http://www.eu-egee.org/pr/uk/egee_itu_challenge
  33. 33.
    MacLaren, J., Sakellariou, R., Krishnakumar, K.T., Garibaldi, J., Ouelhadj, D.: Towards service level agreement based scheduling on the Grid. In: Procs 14th Int. Conf. on Automated Planning and Scheduling (ICAPS 04) (2004)Google Scholar
  34. 34.
    Lechner, A., et al.: Experiences on Grid production for Geant4. EGEE User Forum, Manchester, UK, 9–11 May 2007. http://indico.cern.ch/contributionDisplay.py?contribId=31&sessionId=24&confId=7247
  35. 35.
    Mirman, I.: Going parallel the new way. Desktop Comput. 10(11) June 2006Google Scholar
  36. 36.
    Mościcki, J.T.: Distributed analysis environment for HEP and interdisciplinary applications. Nuclear Ins. Methods Phys. Res. A 502, 426–429 (2003)CrossRefGoogle Scholar
  37. 37.
    Osorio, A., Traxer, O., Merran, S., Dargent, F., Ripoche, X., Ati, J.: Real time fusion of 2D fluoroscopic and 3D segmented CT images integrated into an Augmented Reality system for percutaneous nephrolithotomies (PCNL). In: InfoRAD 2004, RSNA’04 (2004)Google Scholar
  38. 38.
    Pacini, F., Kunzt, P.: Job description language attribute specification. EGEE Tech. Rep. 555796. (2005) http://glite.web.cern.ch/glite/documentation/
  39. 39.
    Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource management for high throughput computing. In: Proceedings of the Seventh IEEE International Symposium on High Performance Distributed Computing. July 1998Google Scholar
  40. 40.
    Rosmanith, H., Kranzlmuller, D.: glogin - A multifunctional, interactive tunnel into the Grid. In: Proceedings 5th IEEE/ACM Int. Workshop on Grid Computing (GRID’04) (2004)Google Scholar
  41. 41.
    Roberts, L.G.: Beyond Moore’s law: internet growth trends. IEEE Comput. 33(1), 117–119 January 2000Google Scholar
  42. 42.
    Servois, V., Osorio, A., et al.: A new PC based software for prostatic 3D segmentationn measurement: application to permanent prostate brachytherapy (PPB) evalution using CTn MR images fusion. In: InfoRAD RSNA 2002. 88th Annual Meeting of the Radiological Society of NorthAmerica. December 2002Google Scholar
  43. 43.
    SGI: High-performance computers become interactive. www.sgi.com/company_info/newsroom/3rd_party/111505_starp.pdf. January 2006
  44. 44.
    Shalf, J., Bethel, Cactus, E.W.: Visapult: an ultra-high performance Grid-distributed visualization architecture using connectionless protocols. IEEE Comput. Graph. Appl. 23(2), 51–59 (2003)CrossRefGoogle Scholar
  45. 45.
    Smallen, S., Casanova, H., Berman, F.: Applying scheduling and tuning to on-line parallel tomography. In: Procs. 2001 ACM/IEEE conference on Supercomputing (SC’01) (2001)Google Scholar
  46. 46.
    Snell, Q., Clement, M.J., Jackson, D.B., Gregory, C.: The performance impact of advance reservation meta- scheduling. In: Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing at IPDPS ’00/JSSPP ’00, pp. 137–153. Springer (2000)Google Scholar
  47. 47.
    Sodan, A.C., Doshi, S., Barsanti, L., Taylor, D.: Gang scheduling and adaptive resource allocation to mitigate advance reservation impact. In: Proceedings Sixth IEEE Int. Symp. on Cluster Computing and the Grid, pp. 649–653, IEEE Comp. Soc. Press (2006)Google Scholar
  48. 48.
    Sundararaj, A., Gupta, A., Dinda, P.: Increasing application performance in virtual environments through run-time inference and adaptation. In: Proceedings of the 14th IEEE Int. Symp. on High Performance Distributed Computing (HPDC 2005) (2005)Google Scholar
  49. 49.
    Thomas, M., Burruss, J., Cinquini, L., Fox, G., Gannon, D., Glilbert, I., von Laszewski, G., Jackson, K., Middleton, D., Moore, R., Pierce, M., Plale, B., Rajasekar, A., Regno, R., Roberts, E., Schissel, D., Seth, A., Schroeder, W.: Grid portal architectures for scientific applications. J. Phys. 16, 596–600 (2005)Google Scholar
  50. 50.
    Tola, V., Lillo, F., Gallegati, M.,Mantegna, R.N.: Cluster analysis for portfolio optimization. J. Econ. Dyn. Control (2007) (in press)Google Scholar
  51. 51.
    Tsaregorodtsev, A., Gronne, V., Stokes-Rees, I.: DIRAC: a scalable lightweight architecture for high throughput computing. In: Proceedings 5th IEEE/ACM Int. Workshop on Grid Computing (GRID’04) (2004)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Cécile Germain-Renaud
    • 1
    • 2
  • Charles Loomis
    • 2
  • Jakub T. Mościcki
    • 3
    Email author
  • Romain Texier
    • 1
  1. 1.LRIOrsay CedexFrance
  2. 2.LALOrsay CedexFrance
  3. 3.CERNGenevaSwitzerland

Personalised recommendations