Advertisement

Journal of Grid Computing

, Volume 5, Issue 3, pp 283–294 | Cite as

Enterprise Grids: Challenges Ahead

  • R. Jiménez-Peris
  • M. Patiño-Martínez
  • B. Kemme
Article

Abstract

Grid technologies have matured over the last few years. This level of maturity is especially true in the field of scientific computing in which Grids have become the main infrastructure for scientific problem solving. Due to its success, the use of Grid technology rapidly finds its introduction into other fields. One of such fields is enterprise computing in which Grids are seen as a new architecture for data centers. In this paper, we describe the vision of enterprise Grids, current scientific achievements that will leverage this vision, and challenges ahead.

Keywords

Grid Technology Autonomic Computing Enterprise Application Very Large Data Base Snapshot Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, Y., Danilov, C., Miskin-Amir, M., Stanton, J., Tutu, C.: On the performance of consistent wide-area database replication. Technical Report CNDS-2003-3, John Hopkins University (2003)Google Scholar
  2. 2.
    Amza, C., Cox, A.L., Zwaenepoel, W.: Distributed versioning: consistent replication for scaling back-end databases of dynamic content web sites. In: Int. Middleware Conf. (2003)Google Scholar
  3. 3.
    Balakrishnan, M., Birman, K.: PLATO: Predicitve latency-aware total ordering. In: Proc. of the Int. Symp. on Reliable Distributed Systems (SRDS) (2006)Google Scholar
  4. 4.
    Barga, R., Lomet, D., Weikum, G.: Recovery guarantees for general multi-tier applications. In: Int. Conf. on Data Engineering (ICDE) (2002)Google Scholar
  5. 5.
    Bartoli, A., Jiménez-Peris, R., Kemme, B., and all: Adapt: towards autonomic web services. In: Distributed Systems Online (2005)Google Scholar
  6. 6.
    Bilas, A., Iftode, L., Singh, J.P.: Evaluation of hardware support for shared virtual memory clusters. In: Proc. of the 12th ACM International Conference on Supercomputing (ICS98) (1998)Google Scholar
  7. 7.
    Breitbart, Y., Korth, H.F.: Replication and consistency: being lazy helps sometimes. In: ACM Int. Conf. on Principles of Database Systems (PODS) (1997)Google Scholar
  8. 8.
    Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in locally distributed Web-server systems. ACM Comput. Surv. 34(2), 263–311 (2002)CrossRefGoogle Scholar
  9. 9.
    Chen, J., Soundararajan, G., Amza, C.: Autonomic provisioning of backend databases in dynamic content web servers. In: Int. Conf. on Autonomic Computing (ICAC) (2006)Google Scholar
  10. 10.
    Council, T.P.P.: TPC Benchmark C (2006)Google Scholar
  11. 11.
    Council, T.P.P.: TPC Benchmark W (2006)Google Scholar
  12. 12.
    de Sousa, A.L.P.F., Oliveira, R.C., Moura, F., Pedone, F.: Partial replication in the database state machine. In: IEEE Int. Symposium on Network Computing and Applications (2001)Google Scholar
  13. 13.
    Elnikety, S., Zwaenepoel, W., Pedone, F.: Database replication using generalized snapshot isolation. In: IEEE Int. Symp. on Reliable Distributed Systems (SRDS) (2005)Google Scholar
  14. 14.
    Enterprise Grid Alliance: EGA Reference Model (2005)Google Scholar
  15. 15.
    Ferreira, L., Easton, J., Kra, D., et.al.: Patterns: Emerging Patterns for Enterprise Grids. IBM RedBooks (2006)Google Scholar
  16. 16.
    Felber, P., Narasimhan, P.: Reconciling replication and transactions for the end-to-end reliability of CORBA applications. In: DOA (2002)Google Scholar
  17. 17.
    Ferguson, D.F., Nikolau, C., Sairamesh, J., Yemini, Y.: Economic models for allocating resources in computer systems. In: Clearwater, S.H. (ed.): Market-based Control: A Paradigm for Distributed Resource Allocation, pp. 156–183. World Scientific Publishing Co. Inc. (1996)Google Scholar
  18. 18.
    Foster, I.T.: The anatomy of the Grid. In: CCGRID (2001)Google Scholar
  19. 19.
    Foster, I.T., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the Grid. In: Global Grid Forum (2002)Google Scholar
  20. 20.
    Frølund, S., Guerraoui, R.: X-ability: a theory of replication. In: Symp. on Principles of Distributed Computing (PODC) (2000)Google Scholar
  21. 21.
    Frølund, S., Guerraoui, R.: e-Transactions: end-to-end reliability for three-tier architectures. IEEE Trans. Softw. Eng. 28(4), 378–395 (2002)CrossRefGoogle Scholar
  22. 22.
    Grov, J., Soares, L., Correia Jr., A., Pereira, J., Oliveira, R., Pedone, F.: A pragmatic protocol for database replication in interconnected clusters. In: Proc. of the 12th IEEE Int. Symp. Pacific Rim Dependable Computing (PRDC). Riverside, CA (2006)Google Scholar
  23. 23.
    Heiss, H., Wagner, R.: Adaptive load control in transaction processing systems. In: Proc. of 17th Very Large Data Bases Conf. (VLDB) (1991)Google Scholar
  24. 24.
    Foster, I., Kesselman, C.: The Grid. MKP, Budapest (1998)Google Scholar
  25. 25.
    Irún-Briz, L., Decker, H., de Juan-Marín, R., Castro-Company, F., Armendáriz-Iñigo, J.E., Muñoz-Escoí, F.D.: MADIS: a slim middleware for database replication. In: Euro-Par, pp. 349–359 (2005)Google Scholar
  26. 26.
    Jajodia, S., Kerschberg, L. (eds.): Advanced Transaction Models and Architectures. Kluwer, Dordrecht (1997)zbMATHGoogle Scholar
  27. 27.
    Jiménez-Peris, R., Patiño-Martínez, M., Alonso, G.: Non-intrusive, parallel recovery of replicated data. In: IEEE Symp. on Reliable Distributed Systems (SRDS) (2002)Google Scholar
  28. 28.
    Jiménez-Peris, R., Patiño-Martínez, M., Alonso, G., Kemme, B.: Are quorums an alternative for data replication. ACM Trans. Database Syst. 28(3), 257–294 (2003)CrossRefGoogle Scholar
  29. 29.
    Jiménez-Peris, R., Patiño-Martínez, M., Alonso, G., Arevalo, S.: A low-latency non-blocking atomic commitment. In: Int. Conf. on Distributed Computing (DISC) (2001)Google Scholar
  30. 30.
    Kemme, B., Alonso, G.: Postgres-R, a new way to implement database replication. In: Int. Conf. on Very Large Data Bases (VLDB) (2000)Google Scholar
  31. 31.
    Kemme, B., Bartoli, A., Babaoglu, O.: Online reconfiguration in replicated databases based on group communication. In: Int. Conf. on Dependable Systems and Networks (DSN) (2001)Google Scholar
  32. 32.
    Kemme, B., Jiménez-Peris, R., Patiño-Martínez, M., Salas, J.: Exactly once interaction in a multi-tier architecture. In: VLDB Workshop on Design, implementation, and deployment of database replication (2005)Google Scholar
  33. 33.
    Kemme, B., Pedone, F., Alonso, G., Schiper, A., Wiesmann, M.: Using optimistic atomic broadcast in transaction processing systems. IEEE Trans. Knowl. Data Eng. 15(4), 1018–1032 (2003)CrossRefGoogle Scholar
  34. 34.
    Kephart, J., Chess, D.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50 (2003)Google Scholar
  35. 35.
    Kermarrec, A.-M., Rowstron, A.I.T., Shapiro, M., Druschel, P.: The IceCube approach to the reconciliation of divergent replicas. In: ACM Int. Conf. on Principles of Distributed Computing (PODC) (2001)Google Scholar
  36. 36.
    Lau, E., Madden, S.: An integrated approach to recovery and high availability in an updatable, distributed data warehouse. In: Proc. of the 32nd Int. Conf. on Very Large Data Bases (VLDB) (2006)Google Scholar
  37. 37.
    Leff, A., Rayfield, J.T., Dias, D.M.: Service-level agreements and commercial Grids. IEEE Internet Computing 7(4), 44–50 (2003)CrossRefGoogle Scholar
  38. 38.
    Lin, Y., Kemme, B., Patiño-Martínez, M., Jiménez-Peris, R.: Middleware based Data replication providing snapshot isolation. In: ACM Int. Conf. on Management of Data (SIGMOD) (2005)Google Scholar
  39. 39.
    Lin, Y., Kemme, B., Patiño-Martínez, M., Jiménez-Peris, R.: Consistent data replication: is it feasible in WANs? In: Euro-Par (2005)Google Scholar
  40. 40.
    Martins, V., Pacitti, E., Valduriez, P.: A dynamic distributed algorithm for semantic reconciliation. In: 6th Workshop on Distributed Data and Structures (WDAS) (2006)Google Scholar
  41. 41.
    Milan, J., Jiménez-Peris, R., Patiño-Martínez, M., Kemme, B.: Adaptive middleware for data replication. In: Int. Middleware Conf. (Middleware) (2004)Google Scholar
  42. 42.
    Moenkeberg, A., Weikum, G.: Performance evaluation of an adaptive and robust load control method for the avoidance of data contention trashing. In: Int. Conf. on Very Large Data Bases (VLDB) (1992)Google Scholar
  43. 43.
    Moser, L.E., Melliar-Smith, P.M., Narasimhan, P., Tewksbury, L., Kalogeraki, V.: The eternal system: an architecture for enterprise applications. In: Int. on Enterprise Computing Conf. (EDOC) (1999)Google Scholar
  44. 44.
    Muñoz-Escoí, F.D., Pla-Civera, J., Ruiz-Fuertes, M.I., Irún-Briz, L., Decker, H., Armendáriz-Íñigo, J.E., de Mendívil, J.R.G.: Managing transaction conflicts in middleware-based database replication architectures. In: IEEE Int. Symp. On Reliable Distributed Systems (SRDS) (2006)Google Scholar
  45. 45.
  46. 46.
    Open Grid Forum: http://www.ogf.org/.
  47. 47.
    Oracle: Grid Computing with Oracle. White Paper (2005)Google Scholar
  48. 48.
    Pacitti, E., Simon, E.: Update propagation strategies to improve freshness in lazy master replicated databases. VLDB Journal 8(3,4), 305–318 (2000)Google Scholar
  49. 49.
    Pape, C.L., Gançarski, S., Valduriez, P.: Refresco: Improving query performance through freshness control in a database cluster. In: CoopIS (2004)Google Scholar
  50. 50.
    Patiño-Martínez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Middle-R: Consistent database replication at the middleware level. ACM Trans. Comput. Syst. (TOCS) 23(4), 275–423 (2005)Google Scholar
  51. 51.
    Pautasso, C., Heinis, T., Alonso, G.: Autonomic execution of web service compositions. In: Int. Conf. on Web Services (ICWS) (2005)Google Scholar
  52. 52.
    Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach. Distributed and Parallel Databases 14(1), 71–98 (2003)CrossRefGoogle Scholar
  53. 53.
    Pedone, F., Schiper, A.: Optimistic atomic broadcast. In: Kutten, S. (ed.) Proc. of 12th Distributed Computing Conference (DISC), Vol. LNCS 1499, pp. 318–332 (1998)Google Scholar
  54. 54.
    Perez, F., Vuckovic, J., Patiño-Martínez, M., Jiménez-Peris, R.: Highly available long running transactions and activities for J2EE applications. In: IEEE Int. Conf. on Distributed Computing Systems (ICDCS) (2006)Google Scholar
  55. 55.
    Plattner, C., Alonso, G.: Ganymed: Scalable replication for transactional web applications. In: Proc. of the ACM/IFIP/USENIX Int. Middleware Conf. (2004)Google Scholar
  56. 56.
    Plattner, C., Alonso, G., Ozsu, T.: DBFarm: A scalable cluster for multiple databases. In: Proc. of the ACM/IFIP/USENIX Int. Middleware Conf. (2006)Google Scholar
  57. 57.
    Robertson, P., Williams, B.: Automatic recovery from software failure. Commun. ACM 49, 41–47 (2006)CrossRefGoogle Scholar
  58. 58.
    Rodrigues, L., Mocito, J., Carvalho, N.: From spontaneous total order to uniform total order: Different degrees of optimistic delivery. In: Proc. of the ACM Symposium on Applied Computing (SAC), pp. 723–727 (2006)Google Scholar
  59. 59.
    Röhm, U., Böhm, K., Schek, H.-J., Schuldt, H.: FAS - A freshness-sensitive coordination middleware for a cluster of OLAP components. In: Int. Conf. on Very Large Data Bases (VLDB) (2002)Google Scholar
  60. 60.
    Salas, J., Jiménez-Peris, R., Patiño-Martínez, M., Kemme, B.: Lightweight reflection for middleware based database replication. In: IEEE Symp. on Reliable Distributed Systems (SRDS) (2006)Google Scholar
  61. 61.
    Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E.M., Wierman, A.: How to determine a good multi-programming level for external scheduling. In: Int. Conf. on Data Engineering (ICDE) (2006)Google Scholar
  62. 62.
    Soundararajan, G., Amza, C., Goel, A.: Database replication policies for dynamic content applications. In: ACM SIGOPS EuroSys (2006)Google Scholar
  63. 63.
    Standard Performance Evaluation Corporation: SPECjAppServer2004 version 1.03. Standard Performance Evaluation Corporation (2006)Google Scholar
  64. 64.
    Sun Microsystems: ECperf specification v1.1 final release. Sun Microsystems (2003a)Google Scholar
  65. 65.
    Sun Microsystems: Java 2 Platform Enterprise Edition v1.4. Sun Microsystems (2003b)Google Scholar
  66. 66.
    Weikum, G., Christian, A., Kraiss, A., Sinnwell, M.: Towards self-tuning memory management for data servers. IEEE Data Eng. Bull. 22(2), 3–11 (1999)Google Scholar
  67. 67.
    WS-CAF: Web services composite application framework (WS-CAF). OASIS (2005)Google Scholar
  68. 68.
    Wu, S., Kemme, B.: Postgres-R(SI): Combining replica control with concurrency control based on snapshot isolation. In: IEEE Int. Conf. on Data Engineering (ICDE) (2005)Google Scholar
  69. 69.
    Zhao, W., Moser, L.E., Melliar-Smith, P.M.: Unification of replication and transaction processing in three-tier architectures. In: IEEE Int. Conf. on Distributed Computing Systems (ICDCS), pp. 290–300 (2002)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • R. Jiménez-Peris
    • 1
  • M. Patiño-Martínez
    • 1
  • B. Kemme
    • 2
  1. 1.Facultad de InformáticaUniversidad Politécnica, de Madrid (UPM)MadridSpain
  2. 2.McGill UniversitySchool of Computer ScienceMontrealCanada

Personalised recommendations