Advertisement

Journal of Grid Computing

, Volume 4, Issue 1, pp 33–48 | Cite as

Matchmaking Framework for Mathematical Web Services

  • Simone A. Ludwig
  • Omer F. Rana
  • Julian Padget
  • William Naylor
Article

Abstract

Service discovery and matchmaking in a distributed environment has been an active research issue for some time now. Previous work on matchmaking has typically presented the problem and service descriptions as free or structured (marked-up) text, so that keyword searches, tree-matching or simple constraint solving are sufficient to identify matches. In this paper, we discuss the problem of matchmaking for mathematical services, where the semantics play a critical role in determining the applicability or otherwise of a service and for which we use OpenMath descriptions of pre- and post-conditions. We describe a matchmaking architecture supporting the use of match plug-ins and describe five kinds of plug-in that we have developed to date: (i) A basic structural match, (ii) a syntax and ontology match, (iii) a value substitution match, (iv) an algebraic equivalence match and (v) a decomposition match. The matchmaker uses the individual match scores from the plug-ins to compute a ranking by applicability of the services. We consider the effect of pre- and post-conditions of mathematical service descriptions on matching, and how and why to reduce queries into Disjunctive Normal Form (DNF) before matching. A case study demonstrates in detail how the matching process works for all four algorithms.

Key words

match plug-ins match score matchmaking mathematical web services 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Ganglia Monitoring System”, http://ganglia. sourceforge.net/.
  2. 2.
    A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraithe, S. Narayanan, M. Paolucci, T. Payne, K. Sycara and H. Zeng, “DAML-S: Semantic markup for web services”, in Proc. 1st Int'l Semantic Web Conf. (ISWC 02), 2002.Google Scholar
  3. 3.
    V.R. Benjamins, E. Plaza, E. Motta, D. Fensel, R. Studer, B. Wielinga, G. Schreiber, Z. Zdrahal and S. Decker, “An intelligent brokering service for knowledge-component reuse on the world-wideweb”, in Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based System Workshop (KAW'98), Banff, Canada, pp. 18–23, April 1998.Google Scholar
  4. 4.
    V.R. Benjamins, B. Wielinga, J. Wielemaker and D. Fensel, “Towards brokering problem-solving knowledge on the internet”, in D. Fensel and R. Studer (eds.), Proceedings of the 11th European Workshop on Knowledge Acquisition, Modeling and Management (EKAW-99), Vol. 1621 of LNAI, Springer, Berlin Heidelberg New York pp. 33–48, 1999.CrossRefGoogle Scholar
  5. 5.
    R. Brachman and J. Schmolze, “An overview of the KL-ONE knowledge representation system”, 1985.Google Scholar
  6. 6.
    S. Buswell, O. Caprotti and M. Dewar, “Mathematical Service Description Language”, Technical Report, 2003. Available from the MONET website: http://monet.nag.co.uk/cocoon/monet/publicdocs/monet-msdl-final.pdf.
  7. 7.
    O. Caprotti, M. Dewar, J. Davenport and J. Padget, “Mathematics on the (Semantic) Net”, in C. Bussler, J. Davies, D. Fensel, and R. Studer (eds.), Proceedings of the European Symposium on the Semantic Web, Vol. 3053 of LNCS, Springer, pp. 213–224, 2004.Google Scholar
  8. 8.
    Coalition, “OWL-S: Semantic markup for web services”, 2003.Google Scholar
  9. 9.
    T. Finin, R. Fritzson, D. McKay and R. McEntire, “KQML as an agent communication language”, in Proceedings of 3rd International Conference on Information and Knowledge Management, pp. 456–463, 1994.Google Scholar
  10. 10.
    M. Genesereth and R. Fikes, “Knowledge interchange format, version 3.0 reference manual”, Technical report, Computer Science Department, Stanford University, 1992. Available from http://www-ksl.stanford.edu/knowledge- sharing/papers/kif.ps.
  11. 11.
    M. Gomez and E. Plaza, “Extended matchmaking to maximize capability reuse”, in N. R. Jennings, C. Sierra, L. Sonnenberg and M. Tambe (eds.), Proceedings of The Third International Joint Conference on Autonomous Agents and Multi Agent Systems, Vol. 1., ACM, pp. 144–151, 2004.Google Scholar
  12. 12.
    L. Huang, D. Walker, Y. Huang and O. Rana, “Dynamic web service selection for workflow optimisation”, Proceedings of UK eScience All-Hands Meeting, Nottingham, 2005.Google Scholar
  13. 13.
  14. 14.
    D. Kuokka and L. Harada, “Integrating information via matchmaking”, Intelligent Information Systems, Vol. 6, No. 2–3, pp. 261–279, 1996.CrossRefGoogle Scholar
  15. 15.
    MONET Consortium, “MONET Home Page”, 2002, Available from http://monet.nag.co.uk.
  16. 16.
    W. Naylor and J. Padget, “Semantic matching for mathematical services”, Lecture Notes in Computer Science, Vol. 3863, pp. 174–189, 2006.CrossRefGoogle Scholar
  17. 17.
    W. Naylor and S. Watt, “Meta-stylesheets for the conversion of mathematical documents into multiple forms”, Annals of Mathematics and Artificial Intelligence, Vol. 38, No. 1–3, pp. 3–25, 2003.CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    M. Nodine, W. Bohrer, and A. Ngu, “Semantic brokering over dynamic heterogenous data sources in InfoSleuth”, in Proceedings of the 15th International Conference on Data Engineering, pp. 358–365, 1999.Google Scholar
  19. 19.
    D. Richardson, “Some unsolvable problems involving elementary functions of a real variable”, Journal of Computational Logic, Vol. 33, pp. 514–520, 1968.zbMATHGoogle Scholar
  20. 20.
    G. Salton, Automatic Text Processing, Addison-Wesley, 1989.Google Scholar
  21. 21.
    J. Sowa, “Ontology, Metadata, and Semiotics, Conceptual Structures: Logical, Linguistic, and Computational Issues”, Lecture Notes in AI #1867, Springer, Berlin Heidelberg New York pp. 55–81, 2000.Google Scholar
  22. 22.
    K. Sycara, S. Widoff, M. Klusch and J. Lu, “Larks: Dynamic matchmaking among heterogeneous software agents in cyberspace”, Journal of Autonomous Agents and Multi Agent Systems, Vol. 5, No. 2, pp. 173–203, 2002.CrossRefGoogle Scholar
  23. 23.
    I. Taylor, M. Shields, I. Wang and O. Rana, “Triana applications within Grid computing and peer to peer environments”, Journal of Grid Computing, Vol. 1, pp. 199–217, 2003.CrossRefGoogle Scholar
  24. 24.
    The GENSS Project, “GENSS Home Page”, 2004. Available from http://genss.cs.bath.ac.uk.
  25. 25.
    The OpenMath Society, “The OpenMath Standard”, 2002. Available from http://www.openmath.org/standard/om11/omstd11.xml.
  26. 26.
    The OpenMath Society, “The OpenMath Standard”, 2004. Available from http://www.openmath.org/cocoon/openmath/standard/om20/index.html.
  27. 27.
    UDDI, “UDDI Technical White Paper”, 2003, Available from http://www.uddi.org/pubs/Iru_UDDI_Technical_ White_Paper.pdf.
  28. 28.
    D. Veit, Matchmaking in Electronic Markets, Vol. 2882 of LNCS. Springer. Hot Topics, 2003.Google Scholar
  29. 29.
    W3C MathML, “Mathematical Markup Language (MathML) Version 2.0”, 2003. Available from http://www.w3.org/TR/MathML2/.
  30. 30.
    W3C WSDL, “Web Services Description Language (WSDL) 1.1”, 2004. Available from http://www.w3.org/TR/wsdl.
  31. 31.
    A.M. Zaremski and J.M. Wing, “Specification matching of software components”, ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, pp. 333–369, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Simone A. Ludwig
    • 1
  • Omer F. Rana
    • 1
  • Julian Padget
    • 2
  • William Naylor
    • 2
  1. 1.School of Computer ScienceCardiff UniversityCardiffUK
  2. 2.Department of Computer ScienceUniversity of BathBathUK

Personalised recommendations