Genetic Resources and Crop Evolution

, Volume 66, Issue 8, pp 1773–1790 | Cite as

Genetic diversity and population structure show different patterns of diffusion for bitter and sweet manioc in Brazil

  • Gilda Santos Mühlen
  • Alessandro Alves-PereiraEmail author
  • Cássia Regina Limonta Carvalho
  • André Braga Junqueira
  • Charles R. Clement
  • Teresa Losada Valle
Research Article


Although many important crops originated in Amazonia, the general patterns of their evolutionary histories are still obscure. Currently a major global food crop, manioc originated in southwestern Amazonia and was dispersed throughout the lowland Neotropics before the European conquest. However, little is known about the origin of the bitter and sweet landraces, nor the routes by which these were dispersed in Brazil and beyond. We used a non-systematic Brazil-wide sample of 494 manioc landraces from 11 geographic regions, and ten nuclear microsatellite markers to analyze the genetic diversity of sweet and bitter manioc. Bayesian simulations highlighted the bitter–sweet divergence and also suggested the existence of two groups of sweet manioc (circum-Cerrado and general Brazil) and two groups of bitter manioc (upper Negro River and general Brazil), while the relationships among geographic regions were depicted with clustering analysis. Overall we suggest that: (1) manioc was initially domesticated to be sweet, was then dispersed from southwestern Amazonia into both the Amazon basin and the Cerrado; (2) that bitter manioc arose from the general Brazilian sweet manioc landraces, almost certainly in Amazonia, where bitter manioc became most important and was dispersed both throughout Amazonia and along the Brazilian coast, but especially to the upper Negro River, where it became most diverse. Our study adds insights to the knowledge about how native Amazonian crops have been managed across their history of domestication.


Bayesian clustering Cassava Domestication Genetic relationships Geographic distribution Manihot esculenta 



The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 00/00239-3 and 00/00240-1), for primary funding, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, CT-Amazônia-575588/08-0) for logistic and analytical support, the numerous traditional and indigenous farmers who agreed to our collections, the Bilateral Project CNPq/Instituto Socioambiental (ISA)/Institut de Recherche pour le Développement (IRD), (CNPq, 91.0211/97-3). We thank the French Bureau des Ressources Génétiques, for use of manioc landraces from the upper Negro River, ISA and the Federação das Organizações Indígenas do Rio Negro (FOIRN) for authorizing reuse of the genetic information from the manioc landraces of the upper Negro River. We thank Laure Emperaire (IRD), Doyle McKey (Université de Montpellier), Manuel Arroyo-Kalin (University College London), for comments on the manuscript, and Josefino Fialho (Embrapa Cerrados), for several manioc samples. AA-P thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 51/2013) and FAPESP (2018/00036-9) for post-doctoral scholarships. CRC thanks CNPq (303851/2015-5) for a research fellowship.

Author contribution statement

GSM and TLV designed research, GSM, TLV and CRLC performed research, GSM, TLV and CRLC contributed reagents, GSM, AA-P and CRC analyzed data, ABJ contributed GIS support and map design, GSM, AA-P, CRC, TLV, and ABJ wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10722_2019_842_MOESM1_ESM.xlsx (120 kb)
Supplementary Table S1 Passport data, SSR genotypes and ancestry coefficients of Structure analysis for 494 Brazilian manioc landraces. Supplementary Table S2 Microsatellite identification, size range in base pairs (bp), number of alleles (A), observed heterozygosity (HO), expected heterozygosity (HE), and inbreeding coefficient (f) estimated from 494 Brazilian manioc landraces. Loci were developed by aChavarriaga-Aguirre et al. (1998) and bMba et al. (2001). *significant at p < 0.05 (XLSX 119 kb)
10722_2019_842_MOESM2_ESM.doc (1.9 mb)
Supplementary Fig. S1 Plot of ΔK of possible groups of 494 Brazilian manioc landraces obtained from ten Structure analysis simulations. The Structure analysis was extended to K = 20 because of the 11 geographical groupings of the manioc landraces, nine of which had both bitter and sweet manioc. Supplementary Fig. S2 Comparison of principal coordinate analyses according to different groupings of the 494 Brazilian manioc landraces screened with ten SSR loci. Groups according to A) bitter and sweet identification by passport data, and according to results of Structure analysis for B) K = 2, C) K = 3 and D) K = 4. Supplementary Fig. S3 Proportional representation of the four major groups of Brazilian manioc landraces identified by the Structure analysis within the 11 geographically-defined groupings (DOC 1967 kb)


  1. Albrecht E, Zhang D, Saftner RA, Stommel JR (2012) Genetic diversity and population structure of Capsicum baccatum genetic resources. Genet Resour Crop Evol 59:517–538Google Scholar
  2. Allaby RG, Fuller DQ, Brown TA (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci USA 105:13982–13986PubMedGoogle Scholar
  3. Allem AC (1994) The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet Resour Crop Evol 41:133–150Google Scholar
  4. Alves-Pereira A, Peroni N, Abreu AG, Gribel R, Clement CR (2011) Genetic structure of traditional varieties of bitter manioc in three soils in Central Amazonia. Genetica 139:1259–1271PubMedGoogle Scholar
  5. Alves-Pereira A, Peroni N, Cavallari MM, Lemes MR, Zucchi MI, Clement CR (2017) High genetic diversity among and within bitter manioc varieties cultivated in different soil types in Central Amazonia. Genet Mol Biol 40:468–479PubMedPubMedCentralGoogle Scholar
  6. Alves-Pereira A, Clement CR, Picanço-Rodrigues D, Veasey EA, Dequigiovanni G, Ramos SLF, Pinheiro JB, Zucchi MI (2018) Patterns of nuclear and chloroplast genetic diversity and structure of manioc along major Brazilian Amazonian rivers. Ann Bot 121:625–639PubMedPubMedCentralGoogle Scholar
  7. Andersen MD, Busk PK, Svendsen I, Møller BL (2000) Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin—cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. J Biol Chem 275:1966–1975PubMedGoogle Scholar
  8. Arroyo-Kalin M (2010) The Amazonian formative: crop domestication and anthropogenic soils. Diversity 2:473–504Google Scholar
  9. Belkhir K, Goudet J, Chikhi L, Bonhomme F (2004) Genetix, logiciel sous WindowsTM pour la génétique des populations, ver. 4.05. Accessed 15 Jan 2011
  10. Bradbury EJ, Duputié A, Delêtre M, Roullier C, Narváez-Trujillo A, Manu-Aduening JA, Emshwiller E, McKey D (2013) Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae). Am J Bot 100:857–866PubMedGoogle Scholar
  11. Brown CH, Clement CR, Epps P, Luedeling E, Wichmann S (2013) The paleobiolinguistics of domesticated manioc (Manihot esculenta). Ethnobiol Lett 4:61–70Google Scholar
  12. Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T (2010) Cassava: the drought, war and famine crop in a changing world. Sustainability 2:3572–3607Google Scholar
  13. Chavarriaga-Aguirre PP, Maya MM, Bonierbale MW, Kresovich S, Fregene MA, Tohme J, Kochert G (1998) Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor Appl Genet 97:493–501Google Scholar
  14. Chevenet F, Brun C, Bañuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439Google Scholar
  15. Chiwona-Karltun L, Brimer L, Saka JDK, Mhone AR, Mkumbira J, Johansson L et al (2004) Bitter taste in cassava roots correlates with cyanogenic glucoside level. J Sci Food Agric 84:581–590Google Scholar
  16. Clement CR, Cristo-Araújo M, d’Eeckenbrugge GC, Alves-Pereira A, Picanço-Rodrigues D (2010) Origin and domestication of native Amazonian crops. Diversity 2:72–106Google Scholar
  17. Clement CR, Cristo-Araújo M, Coppens D’Eeckenbrugge G, Reis VM, Lehnebach R, Picanço-Rodrigues D (2017) Origin and dispersal of domesticated peach palm. Front Ecol Evol 5:148. CrossRefGoogle Scholar
  18. Cordeiro CMT, Abadie T (2007) Coleções nucleares. In: Nass LL (ed) Recursos Genéticos Vegetais. Embrapa Recursos Genéticos e Biotecnologia, Brasília, pp 575–604Google Scholar
  19. Dieringer D, Schlötterer C (2003) Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169Google Scholar
  20. Doyle JJ, Doyle JL (1987) Isolation of plant DNA from fresh tissue. Focus 1:13–15Google Scholar
  21. Duputié A, David P, Debain C, McKey D (2007) Natural hybridization between a clonally propagated crop, cassava (Manihot esculenta Crantz) and a wild relative in French Guiana. Mol Ecol 16:3025–3038PubMedGoogle Scholar
  22. Duputié A, Massol F, David P, Haxaire C, McKey D (2009) Traditional Amerindian cultivators combine directional and ideotypic selection for sustainable management of cassava genetic diversity. J Evol Biol 22:1317–1325PubMedGoogle Scholar
  23. Elias M, Mühlen GS, McKey D, Roa AC, Tohme J (2004) Genetic diversity of traditional South American landraces of cassava (Manihot esculenta Crantz): an analysis using microsatellites. Econ Bot 58:242–256Google Scholar
  24. Emperaire L, Cabral de Oliveira R (2010) Redes sociales y diversidad agrícola en la Amazonía brasileña: un sistema multicéntrico. In: Pochettino ML, Ladio AH, Arenas PM (eds) Tradiciones y Transformaciones en Etnobotánica. Cyted, San Salvador de Jujuy, pp 184–189Google Scholar
  25. Emperaire L, Peroni N (2007) Traditional management of agrobiodiversity in Brazil: a case study of manioc. Hum Ecol 35:761–768Google Scholar
  26. Emperaire L, Mühlen GS, Fleury M et al (2003) Approche comparative de la diversité génétique et de la diversité morphologique des maniocs en Amazonie (Brésil et Guyanes). Les Actes du Bureau des Ressources Génétiques 4:247–267Google Scholar
  27. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedGoogle Scholar
  28. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  29. FAOStat (2018) Food and Agriculture Organization of the United Nations, Statistics Division. Accessed 08 July 2018
  30. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package), version 3.6. Computer program distributed by the author, Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  31. Fraser JA (2010) The diversity of bitter manioc (Manihot esculenta Crantz) cultivation in a whitewater Amazonian landscape. Diversity 2:586–609Google Scholar
  32. Fraser JA, Alves-Pereira A, Junqueira AB, Peroni N, Clement CR (2012) Convergent adaptations: bitter manioc cultivation systems in fertile anthropogenic dark earths and floodplain soils in Central Amazonia. PLoS ONE 7:e43636PubMedPubMedCentralGoogle Scholar
  33. Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A et al (2003) Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet 107:1083–1093PubMedGoogle Scholar
  34. Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24:1–44Google Scholar
  35. Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol 65:155–185PubMedGoogle Scholar
  36. Gribel R, Lemes MR, Bernardes LG, Pinto AE, Shepard GH Jr (2007) Phylogeography of Brazil-nut tree (Bertholletia excelsa, Lecythidaceae): evidence of human influence on the species distribution. Association for Tropical Biology and Conservation, Morelia, p 281Google Scholar
  37. Hernández-Ugalde JA, Mora-Urpí J, Rocha OJ (2011) Genetic relationships among wild and cultivated populations of peach palm (Bactris gasipaes Kunth, Palmae): evidence for multiple independent domestication events. Genet Resour Crop Evol 58:571–583Google Scholar
  38. Isendahl C (2011) The domestication and early spread of manioc (Manihot esculenta Crantz): a brief synthesis. Lat Am Antiq 22:452–468Google Scholar
  39. Johns T (1990) With bitter herbs they shall eat it. Chemical ecology and the origins of human diet and medicine. University of Arizona Press, TucsonGoogle Scholar
  40. Johns T (2016) A chemical-ecological model of root and tuber domestication in the Andes. In: Harris DR, Hillman GC (eds) Foraging and farming: the evolution of plant exploitation. Routledge, London, pp 504–522Google Scholar
  41. Johns T, Alonso JG (1990) Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica 50:203–210Google Scholar
  42. Jørgensen K, Morant AV, Morant M, Jensen NB, Olsen CE, Kannangara R, Motawia MS, Møller BL, Bak S (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol 155:282–292PubMedGoogle Scholar
  43. Kannangara R, Motawia MS, Hansen NK, Paquette SM, Olsen CE, Møller BL, Jørgensen K (2011) Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. Plant J 68:287–301. CrossRefPubMedGoogle Scholar
  44. Lathrap DW (1970) The upper Amazon. Praeger, New YorkGoogle Scholar
  45. Lebot V (2009) Tropical root and tuber crops: cassava, sweet potato, yams and aroids. CAB International, OxfordGoogle Scholar
  46. Léotard G, Duputié A, Kjellberg F, Douzery EJP, Debain C, de Granville J-J, McKey D (2009) Phylogeography and the origin of cassava: new insights from the northern rim of the Amazonian basin. Mol Phylogenet Evol 53:329–334PubMedGoogle Scholar
  47. Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, Peng Z et al (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44:720–724PubMedPubMedCentralGoogle Scholar
  48. Martins PS (2001) Dinâmica evolutiva em roças de caboclos amazônicos. In: Vieira ICG, Silva JMC, Oren DC, D’Incao MA (eds) Diversidade biológica e cultural da Amazônia. Museu Paraense Emílio Goeldi, Belém, pp 369–384Google Scholar
  49. Mason AS (2015) SSR genotyping. In: Batley J (ed) Plant genotyping. Springer, New York, pp 77–89Google Scholar
  50. Mba REC, Stephenson P, Edwards K, Melzer S, Nkumbira J, Gullberg U et al (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31Google Scholar
  51. McKey D, Beckerman S (1993) Chemical ecology, plant evolution and traditional manioc cultivation systems. In: Hladik CM, Hladick A, Linares OF, Pagezy H, Semple A, Hadley M (eds) Tropical forests, people and food: biocultural interactions and applications to development. Parthenon Carnforth and UNESCO, Paris, pp 83–112Google Scholar
  52. McKey D, Delêtre M (2017) The emergence of cassava as a global crop. In: Hershey CH (ed) Achieving sustainable cultivation of cassava, vol 1. Burleigh Dodds Science Publishing, London, pp 3–32Google Scholar
  53. McKey D, Cavagnaro TR, Cliff J, Gleadow R (2010) Chemical ecology in coupled human and natural systems: people, manioc, multitrophic interactions and global change. Chemoecology 20:109–133Google Scholar
  54. Moses M, Umaharam P, Dayanandan S (2014) Microsatellite based analysis of the genetic structure and diversity of Capsicum chinense in the Neotropics. Genet Resour Crop Evol 61:741–755Google Scholar
  55. Mühlen GS, Martins PS, Ando A (2000) Variabilidade genética de etnovariedades de mandioca, avaliada por marcadores de DNA. Sci Agr 57:319–328Google Scholar
  56. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170PubMedGoogle Scholar
  57. Oliveira EJ, Ferreira CF, Santos VS, Jesus ON, Oliveira GAF, Silva MS (2014) Potential of SNP markers for the characterization of Brazilian cassava germplasm. Theor Appl Genet 127:1423–1440PubMedGoogle Scholar
  58. Olsen KM (2004) SNPs, SSRs and inferences on cassava’s origin. Plant Mol Biol 56:517–526PubMedGoogle Scholar
  59. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591PubMedGoogle Scholar
  60. Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am J Bot 88:131–142PubMedGoogle Scholar
  61. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295Google Scholar
  62. Peroni N, Kageyama PY, Begossi A (2007) Molecular differentiation, diversity, and folk classification of “sweet” and “bitter” cassava (Manihot esculenta) in Caiçara and Caboclo management systems (Brazil). Genet Resour Crop Evol 54:1333–1349Google Scholar
  63. Perrut-Lima P, Mühlen GS, Carvalho CRL (2014) Cyanogenic glycoside content in Manihot esculenta subsp. flabellifolia in south-central Rondônia, Brazil, in the center of domestication of M. esculenta subsp. esculenta. Genet Resour Crop Evol 61:1035–1038Google Scholar
  64. Piperno DR, Pearsall DM (1998) The origins of agriculture in the lowland Neotropics. Academic Press, San DiegoGoogle Scholar
  65. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  66. Pujol B, David P, McKey D (2005) Microevolution in agricultural environments: how a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol Lett 8:138–147Google Scholar
  67. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848PubMedGoogle Scholar
  68. Rabbi IY, Kulembeka HP, Masumba E, Marri PR, Ferguson M (2012) An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 125:329–342PubMedGoogle Scholar
  69. Reeves PA, Richards CM (2007) Distinguishing terminal monophyletic groups from reticulate taxa: performance of phenetic, tree-based, and network procedures. Syst Biol 56:302–320PubMedGoogle Scholar
  70. Renvoize BS (1972) The area of origin of Manihot esculenta as a crop plant—a review of the evidence. Econ Bot 26:352–360Google Scholar
  71. Rodrigues DP, Astolfi Filho S, Clement CR (2004) Molecular marker-mediated validation of morphologically defined landraces of pejibaye (Bactris gasipaes) and their phylogenetic relationships. Genet Resour Crop Evol 51:871–882Google Scholar
  72. Rozenthal JP, Dirzo R (1997) Effects of life history, domestication and agronomic selection on plant defense against insects: evidence from maizes and wild relatives. Evol Ecol 11:337–355Google Scholar
  73. Seeb JE, Carvalho G, Hauser L, Naish K, Roberts S, Seeb LW (2011) Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in non-model organisms. Mol Ecol Resour 11(Suppl 1):1–8PubMedGoogle Scholar
  74. Siqueira MVBM, Queiroz-Silva JR, Bressan EA, Borges A, Pereira KJC, Pinto JG, Veasey EA (2009) Genetic characterization of cassava (Manihot esculenta) landraces in Brazil assessed with simple sequence repeats. Genet Mol Biol 32:104–110PubMedPubMedCentralGoogle Scholar
  75. Siqueira MVBM, Pinheiro TT, Borges A, Valle TL, Zatarim M, Veasey EA (2010) Microsatellite polymorphisms in cassava landraces from the Cerrado biome, Mato Grosso do Sul, Brazil. Biochem Genet 48:879–895PubMedGoogle Scholar
  76. Sousa SB, Silva GF, Dias MC, Clement CR, Sousa NR (2017) Farmer variety exchange along Amazonian rivers influence the genetic structure of manioc maintained in a regional Brazilian GeneBank. Genet Mol Res 16:gmr16039690Google Scholar
  77. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163PubMedPubMedCentralGoogle Scholar
  78. Sujii PS, Martins K, de Oliveira Wadt LH, Azevedo VCR, Solferini VN (2015) Genetic structure of Bertholletia excelsa. Conserv Genet 16:955–964Google Scholar
  79. Thomas E, van Zonneveld M, Loo J, Hodgkin T, Galluzzi G, Etten J (2012) Present spatial diversity patterns of Theobroma cacao L. in the Neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS ONE 7:e47676. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Valle TL, Mühlen GS (2003) Agrupamento de variedades de mandioca mansas e bravas através de marcadores moleculares. Project Report to FAPESP, São PauloGoogle Scholar
  81. Valle TL, Carvalho CRL, Ramos MTB, Mühlen GS, Vilela OV (2004) Conteúdo cianogênico em progênies de mandioca originadas do cruzamento de variedades mansas e bravas. Bragantia 63:221–226Google Scholar
  82. Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Gilda Santos Mühlen
    • 1
    • 2
  • Alessandro Alves-Pereira
    • 2
    • 3
    Email author
  • Cássia Regina Limonta Carvalho
    • 4
  • André Braga Junqueira
    • 5
    • 6
  • Charles R. Clement
    • 2
    • 5
  • Teresa Losada Valle
    • 4
  1. 1.Universidade Federal de RondôniaRolim de MouraBrazil
  2. 2.Laboratório de Evolução AplicadaUniversidade Federal do AmazonasManausBrazil
  3. 3.Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
  4. 4.Instituto Agronômico de CampinasCampinasBrazil
  5. 5.Instituto Nacional de Pesquisas da Amazônia – INPAManausBrazil
  6. 6.Institut de Ciència i Tecnologia AmbientalsUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations