Genetic Resources and Crop Evolution

, Volume 66, Issue 8, pp 1791–1811 | Cite as

Combined study on genetic diversity of wheat genotypes using SNP marker and phenotypic reaction to Heterodera filipjevi

  • Zahra Majd Taheri
  • Zahra Tanha MaafiEmail author
  • Kumarse Nazari
  • Khalil Zaynali Nezhad
  • Farshad Rakhshandehroo
  • Abdelfattah A. Dababat
Research Article


Wheat is the most important host for cereal cyst nematode, Heterodera filipjevi. The wild relatives of wheat have important sources of resistance genes to cereal nematodes. Phenotypic and genotypic evaluations have important implications for breeding programs, hence in this study information on the reaction of wheat genotypes to H. filipjevi and their genetic relationships are provided. A total of 223 wheat genotypes originating mostly from West Asia and North Africa (WANA countries) were evaluated against the H. filipjevi. Genetic diversity of 188 genotypes were assessed by using a 152 K single nucleotide polymorphism (SNP) chip. Data were analysed using generalized linear model, showed that there are significant differences at P ≤ 0.0001 among the tested genotypes. UPGMA clustering analysis clearly distinguished the genotypes into two main groups based on 840 SNP markers. The first group (A) consisted of 177 accessions containing multiple clusters, whilst the second group (B) with 11 accessions formed only a single cluster. The similarity coefficient between the accessions ranged from 0.30 and 0.99 with an average of 0.64. The present study demonstrated valuable source of resistance to the local population of H. filipjevi in a diverse range of bread wheat landraces that expand our knowledge towards promising perspective in development of resistant genotype in control strategies of cereal cyst nematode.


Cereal cyst nematode Genetic diversity SNP Bread wheat landraces 



We would like to thank Farhad Saeidi Naeini from Nematology Research Department, Iranian Research Institute of Plant Protection for the help in statistical analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This research did not involve human participants or animals.


  1. Anonymous (2016) Manual protocols for Cereal Cyst Nematode, Root Lesion Nematode and Crown Rot’ employed by SBP Program CIMMYT—TURKEY. Prepared by: Soil Borne Pathogens Group—CIMMYT/TurkeyGoogle Scholar
  2. Balakhnina VP (1989) Resistance of varieties of Triticum durum Desf. and Triticum aestivum L. to the oat cyst nematode. In: Gel’mintologiya Segodnya: Problemy I Perspektivy. Tezisy Dokladov Nauchnoi Konferentsii, Moscow, 4–6 Apr 1989, Moscow, USSR, vol 2, pp 36–37Google Scholar
  3. Batieno BJ, Souleymane O, Tignegre JB, Huynh BL, Kusi F, Poda SL, Close TJ, Roberts P, Danquah E, Ofori K, Ouedraogo TJ (2018) Single nucleotide polymorphism (SNP)-based genetic diversity in a set of Burkina Faso cowpea germplasm. Afr J Agric Res 13(19):978–987. CrossRefGoogle Scholar
  4. Bhatta M, Morgounov A, Belamkar V, Poland J, Baenziger PS (2018) Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat. BMC Genom 19(1):591. CrossRefGoogle Scholar
  5. Bishnoi SP, Bajaj H (2002) Response of resistant barley cultivars to the Indian populations of Heterodera avenae complex. Indian J Nematol 32:125–128Google Scholar
  6. Cobb NA (1918) Estimating the nema population of soil, with special reference to the sugar-beet and root-gall nemas, Heterodera schachtii Schmidt and Heterodera radicicola (Greef) Müller and with a description of Tylencholaimus aequalis n. sp. National Government Printing Office, WashingtonGoogle Scholar
  7. Cook R, Noel GR (2002) Cyst nematodes: Globodera and Heterodera species. In: Star JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CAB International, Wallington, pp 71–105CrossRefGoogle Scholar
  8. Dhingani RM, Umrania VV, Tomar RS, Parakhia MV, Golakiya B (2015) Introduction to QTL mapping in plants. Ann Plant Sci 4(04):1072–1079Google Scholar
  9. Grosse E, Kohlmüller S (2004) Untersuchungen zur Verbreitung von Getreidezystennematoden nach einer neuen Differentialmethode. Mitteilungen Aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem 396:563–564Google Scholar
  10. Hajihasani A, Maafi ZT, Nicol JM, Rezaee S (2010) Effect of the cereal cyst nematode, Heterodera filipjevi, on wheat in microplot trials. Nematology 12:357–363CrossRefGoogle Scholar
  11. Holgado R, Andersson S, Rowe JA, Magnusson C (2004) First record of Heterodera filipjevi in Norway. Nematol Mediterr 32:205–211Google Scholar
  12. Jehan T, Lakhanpaul S (2006) Single nucleotide polymorphism (SNP)–methods and applications in plant genetics: a review. Indian J Biotechnol 5:435–459Google Scholar
  13. Kabbaj H, Sall AT, Al-Abdallat A, Geleta M, Amri A, Filali-Maltouf A, Belkadi B, Ortiz R, Bassi FM (2017) Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front Plant Sci 8:1277CrossRefGoogle Scholar
  14. Kara K, Kanouni MR, Debbabi OS, Naceur MB (2017) Genetic diversity of bread wheat genotypes (Triticum Aestivum L.) revealed by agromorphological characteristics and microsatellite SSR markers. Int J Res Eng Technol 6:178–182Google Scholar
  15. Khan MK, Ozsensoy Y, Pandey A, Thomas G, Akkaya MS, Kayis SA, Hamurcu M, Gezgin S, Topal A, Hakki EE (2015) Genetic diversity and population structure of wheat in India and Turkey. AoB Plants 7:plv083. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Khodadadi M, Fotokian MH, Miransari M (2011) Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Aust J Crop Sci 5(1):17–24Google Scholar
  17. Madzhidow AR (1981) New species of Bidera filipjevi sp. nov. (Heteroderina: Tylenchida) from Tadzhikistan. Izvectija Akademii Nauk Tadzjikiskov SSR, Otdelenie Biologitseskich Nauk 2:40–44Google Scholar
  18. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int. J Plant Genom 2012:728398. CrossRefGoogle Scholar
  19. Mourad AMI, Sallam A, Belamkar V, Wegulo S, Bowden R, Jin Y, Mahdy E, Bakheit B, El-Wafaa AA, Poland J, Baenziger PS (2018) Genome-wide association study for identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front Plant Sci 9:380. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nicol JM, Bolat N, Şahin E, Tulek A, Yıldırım AF et al (2006) The cereal cyst nematode is causing economic damage on rain fed wheat production system of Turkey. Phytopathology 96:S169Google Scholar
  21. Nicol JM, Turner SJ, Coyne DL, Den Nijs L, Hockland S, Tahna Maafi Z (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 21–23CrossRefGoogle Scholar
  22. Pariyar SR, Dababat AA, Sannemann W, Erginbas-Orakci G, Elashry A, Siddique S, Morgounov A, Leon J, Grundler FM (2016) Genome-wide association study in wheat identifies resistance to the cereal cyst nematode Heterodera filipjevi. Phytopathol 106(10):1128–1138. CrossRefGoogle Scholar
  23. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100CrossRefGoogle Scholar
  24. Ren J, Sun D, Chen L, You FM, Wang J, Peng Y, Nevo E, Sun D, Luo MC, Peng J (2013) Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. Int J Mol Sci 14:7061–7088. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Riley IT, Nicol JM, Dababat AA (2009) Cereal cyst nematodes: status, research and outlook. In: Proceedings of the first workshop of the international cereal cyst nematode initiative, 21–23 Oct 2009, Antalya,Turkey. CIMMYT, AnkaraGoogle Scholar
  26. Rumpenhorst HJ, Elekçioğlu IH, Sturhan D, Öztürk G, Eneli S (1996) The cereal cyst nematode Heterodera filipjevi (Madzhidov) in Turkey. Nematol Mediterr 24:135–138Google Scholar
  27. Saghai-Maroof MA, Soliman K, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. PNAS 81:8014–8018CrossRefGoogle Scholar
  28. Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, Kilian A (2011) Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 5:54CrossRefGoogle Scholar
  29. Schork N, Fallin D, Lanchbury J (2000) Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 58:250–264CrossRefGoogle Scholar
  30. Sharma P, Saini M, Gupta OP, Gupta N, Singh AK, Selvakumar R, Tiwari V, Sharma I (2013) Tracking of cereal cyst nematode resistance genes in wheat using diagnostic markers. J Wheat Res 5(1):35–40Google Scholar
  31. Shi A, Qin J, Mou B, Correll J, Weng Y, Brenner D (2017) Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. PLoS ONE 12(11):e0188745. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Smiley RW, Dababat AA, Iqbal S, Jones MGK, Tanha Maafi Z, Peng D, Subbotin SA, Waeyenberge L (2017) Cereal cyst nematodes: a complex and destructive group of Heterodera species. Plant Dis 101:1692–1720. CrossRefPubMedGoogle Scholar
  33. Smiley RW, Yan GP, Handoo ZA (2008) First record of the cyst nematode Heterodera filipjevi on wheat in Oregon. Plant Dis 92:1136CrossRefGoogle Scholar
  34. Spanic V, Korzun V, Ebmeyer E (2016) Assessing genetic diversity of wheat genotypes from different origins by SNP markers. Cereal Res Commun 44(3):361–369. CrossRefGoogle Scholar
  35. Sturhan D (1996) Occurrence of Heterodera flipjevi (Madzhidov, 1981) Stelter, 1984 in Iran. Pak J Nematol 14:89–93Google Scholar
  36. Subbotin SA, Sturhan D, Rumpenhorst HJ, Moens M (2003) Molecular and morphological characterisation of the Heterodera avenae species complex (Tylenchida: Heteroderidae). Nematology 5:515–538CrossRefGoogle Scholar
  37. Taranto F, D’Agostino N, Greco B, Cardi T, Tripodi P (2016) Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genom 17:943. CrossRefGoogle Scholar
  38. Tanha Maafi Z, Subbotin SA, Moens M (2003) Molecular identification of cyst forming nematodes (Heteroderidae) from Iran and a phylogeny based on ITS-rDNA sequences. Nematology 5:99–111CrossRefGoogle Scholar


  1. FAOSTAT website, Food and Agriculture Organization of the United Nations. Accessed on 2017Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zahra Majd Taheri
    • 1
  • Zahra Tanha Maafi
    • 2
    Email author
  • Kumarse Nazari
    • 3
  • Khalil Zaynali Nezhad
    • 4
  • Farshad Rakhshandehroo
    • 1
  • Abdelfattah A. Dababat
    • 5
  1. 1.Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Iranian Research Institute of Plant ProtectionAgricultural Research, Education and Extension Organization (AREEO)TehranIran
  3. 3.International Center for Agricultural Research in the Dry Areas, Regional Cereal Rust Research CenterAegean Agricultural Research InstituteIzmirTurkey
  4. 4.Plant Breeding and Biotechnology DepartmentGorgan University of Agricultural Sciences and Natural ResourcesGorgānIran
  5. 5.International Maize and Wheat Improvement CenterEmek, AnkaraTurkey

Personalised recommendations