Advertisement

Exploring the genetic diversity of jackfruit (Artocarpus heterophyllus Lam.) grown in Uganda based on SSR markers

  • Justine NakintuEmail author
  • Christian Albrecht
  • Christina M. Müller
  • Grace Kagoro-Rugunda
  • Morgan Andama
  • Eunice A. Olet
  • Julius B. Lejju
  • Birgit Gemeinholzer
Research Article
  • 28 Downloads

Abstract

Artocarpus heterophyllus Lam. is an economically important tree crop that is widely cultivated in Uganda for its fruit. Despite its economic importance, little is known about the genetic diversity of jackfruit in the country. This puts the crop’s genetic resource at risk as farmers selectively grow varieties based on market demand. The study analyzed the genetic diversity of A. heterophyllus trees from 12 districts belonging to three agro-ecological zones and three political regions of Uganda. Ten SSR loci were used to assess the genetic relationship among 200 trees, 197 from Uganda and 3 out-group individuals. All SSR loci were polymorphic with an average of 10.9 alleles per locus. STRUCTURE analysis proposed two genetic clusters: Cluster 1 was composed of samples from Eastern and neighboring Central districts, and Cluster 2 which constituted out-groups and samples from Western and neighboring Central districts. Results of STRUCTURE analysis were confirmed by PCoA. Mbarara District exhibited the highest genetic diversity (He = 0.79, I = 1.71), while Kamuli (He = 0.61, I = 1.08 and Pallisa (He = 0.59, I = 1.12) displayed the lowest genetic diversity despite high abundances of jackfruit trees. Molecular variation was higher within populations than among populations. Moderate and significant genetic differentiation was registered among geographical zones, while varietal differences displayed little insignificant genetic differentiation. Soft and white pulped varieties, considered inferior on the market, harbored private alleles which may be genetically valuable resources. Therefore, sustainable utilization and conservation efforts of the jackfruit genetic resource should consider preserving inferior varieties for future crop improvement.

Keywords

Crop improvement Conservation Genetic resource Microsatellites 

Notes

Acknowledgements

The Mbarara University of Science and Technology Institution Review Board and Uganda National Council for Science and Technology are gratefully acknowledged for issuing permits to conduct this research. The authors are grateful to DAAD and Institute of Systematic Botany, Justus-Liebig-University, Giessen, Germany for financing this research. Our sincere gratitude goes to Sabine Mutz, Stefanie Janine Jung, Mohammad Jawarneh, Andreas Kolter, André Fichtner, Volker Weismann for their assistance in the laboratory and Raphael Wangalwa for drawing the maps. We also thank the Botanic Gardens in Bonn and Marburg (both Germany) for providing us with out-group material of their living collection.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

The study went through ethical clearance procedures. It was reviewed by both the Institutional Review Board of Mbarara University of Science and Technology and Uganda National Council for Science and Technology. The jackfruit leaf samples were obtained after ascertaining farmers’ consent.

Supplementary material

10722_2019_830_MOESM1_ESM.xlsx (74 kb)
Supplementary material 1 (XLSX 74 kb)
10722_2019_830_MOESM2_ESM.xlsx (9 kb)
Supplementary material 2 (XLSX 9 kb)

References

  1. Ali SMYA, Md Reza H, Md Samsuzzaman, Md Rashid H, Anwari A, Md Islam Z (2015). Evaluation of existing jackfruit germplasm. Nat Int J Nat Soc Sci 2(4):108–112. ISNN: 2313-4461Google Scholar
  2. Aluka P (2013) Genetic and phenotypic diversity of cultivated Robusta coffee (Coffea canephora Pierre) in Uganda and effect of environmental factors on quality. [Doctoral Thesis]. Department of Plant Science and Crop Protection, University of Nairobi, KenyaGoogle Scholar
  3. APAARI (2012) Jackfruit improvement in the Asia-Pacific region: a status report. APAARI, BangkokGoogle Scholar
  4. Arif IA, Khan HA, Bakhali AH, Homaidan A, Ahmad H, Sadoon MA, Shobrack M (2011) DNA marker technology for wild conservation. Saudi J Biol Sci 18:219–225.  https://doi.org/10.1016/j.sjbs.2011.03.002 CrossRefGoogle Scholar
  5. Atieno Odhiambo T, Ousu I, Williams JF (1977) A history of East Africa. Longman Group Limited, EdinburghGoogle Scholar
  6. Azad AK, Jones JG, Haq N (2007) Assessing morphological and isozyme variation of jackfruit. Agrofor Syst 71:109–125.  https://doi.org/10.1007/s10457-007-9039-8 CrossRefGoogle Scholar
  7. Botstein D, White LR, Skolnick M, Davis WR (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331Google Scholar
  8. Chandrashekar K, Vijayakumar RM, Subramanian S, Kavino M, John Joel A (2018) Morphological characterization of jackfruit (Artocarpus heterophyllus Lam.) local genotypes under coffee ecosystem of lower Pulney Hills. Int J Curr Microbiol 7(3):2210–2224.  https://doi.org/10.20546/ijcmas.2018.703.261 CrossRefGoogle Scholar
  9. ChunHai Y, YaoHui W, YingZhi L, Feng F (2009) Analysis of genetic diversity of jackfruit germplasm using ISSR marking method. J Fruit Sci 26(5):659–665Google Scholar
  10. De Bellis F, Malapa R, Kagy V, Lebegin S, Billot C, Labouisee J-P (2016) New development of 50 SSR Markers in BreadFruit (Artocarpus altilis, Moraceae) by next—generation sequencing. Appl Plant Sci 4(8):1–7.  https://doi.org/10.3732/apps.1600021 CrossRefGoogle Scholar
  11. Dutton RP (1976) Jackfruit: the propagation of tropical fruit trees. Farm Royal Slough, Common Wealth Agricultural Bureau, SloughGoogle Scholar
  12. Earl DA, von Holdt MB (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  13. Ebrahimi A, Zarei A, Mckenna JR, Bujdoso G, Woeste KE (2017) Genetic diversity of Persian Wulnut (Juglans regia) in the cold temperate zone of the United states and Europe. Sci Hortic 220:36–41.  https://doi.org/10.1016/j.scienta.2017.03.030 CrossRefGoogle Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the Software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  15. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetic anlyses under linux and windows. Mol Ecol Resour 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  16. Flores-Renteria L, Krohn A (2013) Scoring microsatellites loci. In: Microsatellites. Totowa, NJ, Springer, pp 319–336.CrossRefGoogle Scholar
  17. Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Rosling H, Dixon A, Dean R, Kresovich S (2003) Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet 107:1083–1093.  https://doi.org/10.1007/s00122-003-1348-3 CrossRefGoogle Scholar
  18. Haq N (2006) Jackfruit, Artocarpus heterophyllus. Southampton Centre for Underutilised Crops, SouthamtonGoogle Scholar
  19. Kanzaki S, Yomemori K, Sugiura A, Subhadrabandhu S (1997) Phylogenetric relationship between jackfruit, the breadfruit and nine other Artocarpus spp. from RFLP analysis of an amplified region of cpDNA. Sci Hortic 70(1):57–66.  https://doi.org/10.1016/S0304-4238(97)00045-9 CrossRefGoogle Scholar
  20. Kawuki RS, Ferguson M, Labuschagne M, Herselman L, Kim D-J (2009) Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breed 23:669–684.  https://doi.org/10.1007/s11032-009-9264-0 CrossRefGoogle Scholar
  21. Khan R, Zerega N, Hossain S, Zuberi IM (2010) Jackfruit (Artocarpus heterophyllus Lam.) diversity in Bangladesh: land use and artificial selection 1. Econ Bot 64(2):124–136.  https://doi.org/10.1007/s12231-010-9116-1 CrossRefGoogle Scholar
  22. Krishnan A, Jayalakshmi G, Joseph E, Babu TS (2015) Assessment of physicochemical properties of jackfruit collections from Kuttanad region of Kerala. Asian J Hortic 10(2):262–266.  https://doi.org/10.15740/HAS/TAJH/10.2/262-266 CrossRefGoogle Scholar
  23. Miller A, Gross LB (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–1414.  https://doi.org/10.3732/ajb.1000522 CrossRefGoogle Scholar
  24. Moyib OK, Odunola OA, Dixon AGO (2007) SSR markers reveal genetic variation between improved cassava cultivars and landraces within a collection of Nigerian cassava germplasm. Afr J Biotechnol 6(23):2666–2674. ISSN: 1684-5315Google Scholar
  25. Musoli P, Cubry P, Aluka P, Billot C, Dufour M, De Bellis F, Pot D, Bieysse D, Charrier A, Leroy T. (2009) Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome 52:634–646CrossRefGoogle Scholar
  26. Nyongesa BO, Were BA, Gudu S, Dangasuk OG, Onkware AO (2012) Genetic diversity in cultivated sesame (Sesamum indicum L.) and related wild species in East Africa. J Crop Sci Biotechnol 16(1):9–15.  https://doi.org/10.1007/s12892-012-0114-y CrossRefGoogle Scholar
  27. Okoth A (1971) A history of Africa. Bookwise Limited, NairobiGoogle Scholar
  28. Peakall R, Smouse EP (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefGoogle Scholar
  29. Pereira-Lorenzo S, Urrestarazu J, Ramos-Cabrer AM, Miranda C, Pina A, Dapena E, Moreno MA, Errea P, Llamero N, Díaz-Hernández MB, Santesteban LG, Laquidain MJ, Gogorcena Y, Urbina V, Dalmases J, Ascasíbar-Errasti J, Royo JB (2017) Analysis of genetic diversity and structure of the Spanish apple genetic resource suggest the existence of an Iberian gene pool. Ann Appl Biol.  https://doi.org/10.1111/aab.12385 Google Scholar
  30. Phaomei G, Pereira LS, Mathew B (2017) Diversity of jackfruit (Artocarpus heterophyllus Lam.) in Rongram Block of West Garo Hills, Meghalaya. Int J Sci Environ Technol 6:1940–1947Google Scholar
  31. Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  32. Rahman HM, Patwary MM, Barua H (2016) Evaluation of yield and quality of three jackfruit (Artocarpus heterophyllus L.) genotypes. Sci J Krishi Found 14(1):107–111.  https://doi.org/10.3329/agric.v14i1.29108 Google Scholar
  33. Rai M, NathV Das B, Rai A, Kumar M (2003) Evalution of jackfruit genotypes for yield and quality attributes under eastern Indian conditions. Orissa J Hortic 31(1):1–6Google Scholar
  34. Raji AA, Fawole L, Gedil M, Dixon AG (2009) Genetic differentiation analysis of African cassava (Manihot esculenta) landraces and elite germplasm using amplified fragment length polymorphism and Simple sequence repeat markers. Ann Appl Biol 155:187–199.  https://doi.org/10.1111/j.1744-7348.2009.003.x CrossRefGoogle Scholar
  35. Rosenberg AN (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138.  https://doi.org/10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  36. Samaddar MH (1985) Jackfruit. In: Bose TK (ed) Fruits of India: tropical and subtropical. Naya Projkash, Culcutta, pp 638–649Google Scholar
  37. Schnell RJ, Olano CT, Campbell RJ, Brown JS (2001) AFLP analysis of genetic diversity within jackfruit germplasm collection. Sci Hortic 91:261–272.  https://doi.org/10.1016/s0304-4238(01)00270-9 CrossRefGoogle Scholar
  38. Shyamalamma S, Chandra SB, Hedge M, Naryanswamy P (2008) Evaluation of genetic diversity in jackfruit (Artocarpus heterophyllus Lam.) based on amplified fragment length markers. Genet Mol Res 7(3):645–656CrossRefGoogle Scholar
  39. Sree Lekha S, Pillai VS, Kumar SJ (2010) Molecular genotyping of Indian cassava cultivars using SSR markers. Adv Environ Biol 4(2):224–233. ISSN: 1995-0756Google Scholar
  40. Turyagyenda LF, Kizito EB, Ferguson ME, Baguma Y, Harvey JW, Gibson P, Wanjala BW, Osiru DS (2012) Genetic diversity among farmer preferred cassava landraces in Uganda. Afr Crop Sci J 20:15–30Google Scholar
  41. Venkatachalam L, Screedhar VR, Bhagylakshmi N (2010) The use of genetic markers for detecting DNA polymorphism, genotypes identification and phylogenetic relationships among banana cultivars. Mol Phylogenet Evol 47:974–985.  https://doi.org/10.1016/j.ympev.2008.03.017 CrossRefGoogle Scholar
  42. Wang HY (2011) Development Of SSR Markers For Jackfruit And Its Unilization In Genetic Diversity Analysis. https://www.globethesis.com/? t=2143360308484173. Accessed 22 Jun 2018
  43. Williams WE, Gardner EM, Haris R III, Chaveerach A, Pereira JT, Zerega NJ (2017) Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae). Ann Bot 119:611–627.  https://doi.org/10.1093/aob/mcw249 Google Scholar
  44. Witherup C (2012) Master’s thesis: genetic diversity of Bangaladesh jackfruit (Artocarpus heterophyllus, Moraceae). Northwestern University and the Chicago Botanic Garden, Plant Biology and Conservation, ChicagoGoogle Scholar
  45. Witherup C, Ragone D, Weisner-Hanks T, Irish B, Scheffler B, Simpson S, Zee F, Zuberi MI, Zerega NJ (2013) Development of microsatellite loci in Artocarpus altilis (MORACEAE) and cross-amplification in congeneric species. Appl Plant Sci.  https://doi.org/10.3732/app.1200423 Google Scholar
  46. Wortmann SC, Eledu AC (1999) Uganda’s agro-ecological zones: a guide for policy markers. CIAT, KampalaGoogle Scholar
  47. Yada B, Tukamuhabwa P, Wanjala B, Kim D-J, Skilton RA, Alajo A, Mwanga ROM (2010) Characterization of Ugandan sweet potato germplasm using fluorescent labeled simple sequence repeat markers. HortScience 45(2):225–230CrossRefGoogle Scholar
  48. Ying-zhi L, Qi M, Feng F, ChunHai Y (2010) Genetic diversity within jackfruit (Artocarpus heterophyllus Lam.). Agric Sci China 9(9):1263–1270.  https://doi.org/10.1016/s1671-2927(09)60215-7 CrossRefGoogle Scholar
  49. Zawedde BM, Ghislain M, Magembe E, Amaro GB, Grumet R, Hancock J (2014) Characterisation of the genetic diversity of Uganda’s sweet potato (Ipomoea batatas) germplasm using microsatellites markers. Genet Resour Crop Evol.  https://doi.org/10.1007/s10722-014-0175-5 Google Scholar
  50. Zerega N, Weisner-Hanks T, Ragone D, Irish B, Scheffler B, Simpson S, Zee F (2015) Diversity in bread fruit complex (Artocarpus, Moraceae): genetic characterisation of critical germplasm. Tree Genet Genomes 11(4):1–26.  https://doi.org/10.1007/s11295-014-0824-z Google Scholar
  51. Zong J-W, ZhaoT-T Ma Q-H, Liang L-S, Wanga G-X (2015) Assessment of genetic diversity and population genetic structure of Corylus mandshurica in China using SSR markers. PLoS ONE.  https://doi.org/10.1371/journal.pone.0137528 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Justine Nakintu
    • 1
    Email author
  • Christian Albrecht
    • 1
    • 2
  • Christina M. Müller
    • 3
  • Grace Kagoro-Rugunda
    • 1
  • Morgan Andama
    • 4
  • Eunice A. Olet
    • 1
  • Julius B. Lejju
    • 1
  • Birgit Gemeinholzer
    • 3
  1. 1.Department of BiologyMbarara University of Science and TechnologyMbararaUganda
  2. 2.Animal Ecology and SystematicsJustus Liebig UniversityGiessenGermany
  3. 3.Systematic BotanyJustus Liebig University GiessenGiessenGermany
  4. 4.Department of BiologyMuni UniversityAruaUganda

Personalised recommendations