Advertisement

Effect of barley chromosomes on the β-glucan content of wheat

  • Pasqualina Colasuonno
  • Ilaria Marcotuli
  • Silvia Cutillo
  • Rosanna Simeone
  • Antonio Blanco
  • Agata GadaletaEmail author
Research Article
  • 35 Downloads

Abstract

In wheat, β-glucan (BG) content represents an important component of dietary fibre with important health benefit. Among cereals, barley, oats and rye have the highest BG content in the grain (from 3 to 10%), while bread and durum wheat contain percentages lower than 1%. Screening genetic resources for improving wheat BG can contribute to human health. In this study, a complete series of wheat–barley addition lines were evaluated for the BG content in replicated field trials for 3 years to determine how the added chromosome influence the BG in wheat. On the overall, the BG varied among the addition lines, and the effect of individual barley chromosomes on the wheat background was evident in each experiment. Significant higher BG than Chinese Spring was found in four addition lines (CS-1H/1HS-6H, CS-2H, CS-6H and CS-7H), while three lines (CS-3H, CS-4H and CS-5H) showed lower amount than the wheat parental line. Particularly, CS-7H had significant high BG in all the years considered, with percentage increments of the mean values ranging from 17.2 to 48.1% in comparison to Chinese Spring. Though BG in wheat grain increased in some addition lines, it was still much lower than in barley. Results are discussed in relation to the genes controlling the synthesis and breakdown of BG in the wheat background.

Keywords

Wheat Hordeum Triticum Wheat–barley addition lines β-glucan 

Notes

Acknowledgements

The research project was supported by grants from Ministero dell’Istruzione, dell’Università e della Ricerca, project ‘PON-01_01145 ISCOCEM’, and research grant from ISEA Agroservice.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest on the content of manuscript and study undertaken.

References

  1. Allendorf FW, Leary RF, Hitt NP, Knudsen KL, Boyer MC, Spruell P (2005) Cutthroat trout hybridization and the U.S. endangered species act: one species, two policies. Conserv Biol 19(4):1326–1328CrossRefGoogle Scholar
  2. Aranyi NR, Varga I, Poczai P, Cernák I, Vida G, Molnár-Láng M, Hoffmann B (2014) What types of powdery mildew can infect wheat–barley introgression lines? Eur J Plant Pathol 139:19–25CrossRefGoogle Scholar
  3. Ayoub M, Mather DE (2002) Effectiveness of selective genotyping for detection of quantitative trait loci: an analysis of grain and malt quality traits in three barley populations. Genome 45(6):1116–1124CrossRefGoogle Scholar
  4. Burton RA, Gibeaut DM, Bacic A, Findlay K, Roberts K, Hamilton A, Baulcombe DC, Fincher GB (2000) Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12(5):691–705CrossRefGoogle Scholar
  5. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like Cslf genes mediate the synthesis of cell wall (1,3;1,4)-β-d-glucans. Science 311(5769):1940–1942CrossRefGoogle Scholar
  6. Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, Fincher GB (2008) The genetics and transcriptional profiles of the cellulose synthase-like HvCslf gene family in barley. Plant Physiol 146(4):1821–1833CrossRefGoogle Scholar
  7. Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6(10):724–732CrossRefGoogle Scholar
  8. Clarke B, Liang R, Morell M, Bird A, Jenkins C, Li Z (2008) Gene expression in a starch synthase iia mutant of barley: changes in the level of gene transcription and grain composition. Funct Integr Genom 8:211–221CrossRefGoogle Scholar
  9. Colasuonno P, Marcotuli I, Lozito ML, Simeone R, Blanco A, Gadaleta A (2017a) Characterization of aldehyde oxidase (AO) genes involved in the accumulation of carotenoid pigments in wheat grain. Front Plant Sci 8:863CrossRefGoogle Scholar
  10. Colasuonno P, Lozito ML, Marcotuli I, Nigro D, Giancaspro A, Mangini G, De Vita P, Mastrangelo AM, Pecchioni N, Houston K, Simeone R, Gadaleta A, Blanco A (2017b) The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics 18(1):122CrossRefGoogle Scholar
  11. Collins HM, Burton RA, Topping DL, Liao ML, Bacic A, Fincher GB (2010) Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chem 87(4):272–282CrossRefGoogle Scholar
  12. Cory A, Baga M, Anyia A, Rossnagel B, Chibbar R (2012) Genetic markers for ClsF6 gene associated with (1,3;1,4)-β-glucan concentration in barley grain. J Cereal Sci 56:332–339CrossRefGoogle Scholar
  13. Cseh A, Soós V, Rakszegi M, Türkösi E, Balázs E, Molnár-Láng M (2013) Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Ann Appl Biol 163(1):142–150CrossRefGoogle Scholar
  14. Cui W, Wood PJ (2000) Relationships between structural features, molecular weight and rheological properties of cereal β-d-glucans. In: Nishinari K (ed) Hydrocolloids, vol 1. Elsevier, Amsterdam, pp 159–168CrossRefGoogle Scholar
  15. Danilova TV, Akhunova AR, Akhunov ED, Friebe B, Gill BS (2017) Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). Plant J 92(2):317–330CrossRefGoogle Scholar
  16. Darko E, Janda T, Majláth I, Szopkó D, Dulai S, Molnár I, Türkösi E, Molnár-Láng M (2015) Salt stress response of wheat–barley addition lines carrying chromosomes from the winter barley “Manas”. Euphytica 203:491–504CrossRefGoogle Scholar
  17. Dhingra D, Michael M, Rajput H, Patil RT (2012) Dietary fibre in foods: a review. Int J Food Sci Technol 49:255–266CrossRefGoogle Scholar
  18. Fincher GB (2009) Exploring the evolution of (1,3; 1,4)-beta-d-glucans in plant cell walls: comparative genomics can help! Curr Opin Plant Biol 12(2):140–147CrossRefGoogle Scholar
  19. Gao W, Clancy JA, Han F, Jones BL, Budde A, Wesenberg DM, Kleinhofs A, Ullrich SE (2004) Fine mapping of a malting-quality QTL complex near the chromosome 4H S telomere in barley. Theor Appl Genet 109(4):750–760CrossRefGoogle Scholar
  20. Giancaspro A, Colasuonno P, Zito D, Blanco A, Pasqualone A, Gadaleta A (2016) Varietal traceability of bread 'Pane Nero di Castelvetrano' by denaturing high pressure liquid chromatography analysis of single nucleotide polymorphisms. Food Control 59:809–817CrossRefGoogle Scholar
  21. Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells—evidence for Myb transactivation of a high-pl alpha-amylase gene promoter. Plant Cell 7(11):1879–1891Google Scholar
  22. Han F, Ullrich SE, Chirat S, Menteur S, Jestin L, Sarrafi A, Hayes PM, Jones BL, Blake TK, Wesenberg DM, Kleinhofs A, Kilian A (1995) Mapping of (1,3;1,4)-β-glucan content and β-glucanase activity loci in barley grain and malt. Theor Appl Genet 91:921–927CrossRefGoogle Scholar
  23. Holthaus JF, Holland JB, White PJ, Frey KJ (1996) Inheritance of β-glucan content of oat grain. Crop Sci 36(3):567–572CrossRefGoogle Scholar
  24. Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington JM, Booth A, Shirley N, Burton RA, Fincher GB, Waugh R (2014) A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genom 15:907CrossRefGoogle Scholar
  25. Igartua E, Hayes PM, Thomas WTB, Meyer R, Mather DE (2002) Genetic control of quantitative grain and malt quality traits in barley. J Crop Prod 5:131–164CrossRefGoogle Scholar
  26. Islam AKMR, Sheperd KW (1990) Incorporation of barley chromosomes into wheat. In: Bajaj YPS (ed) Biotech agric forestry, vol 31. Springer, Berlin, pp 128–151Google Scholar
  27. Islam AKMR, Sheperd KW (2000) Isolation of a fertile wheat–barley addition line carrying the entire barley chromosome 1H. Euphytica 111:145–149CrossRefGoogle Scholar
  28. Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat–barley chromosome addition lines. Heredity 46:161–174CrossRefGoogle Scholar
  29. Islamovic E, Obert D, Oliver R, Harrison S, Ibrahim A, Marshall J, Miclaus KJ, Hu G, Jackson E (2013) Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum Vulgare L.). Mol Breed 31(1):15–25CrossRefGoogle Scholar
  30. Li X, Cordero I, Caplan J, Molhoj M, Reiter WD (2004) Molecular analysis of 10 coding regions from Arabidopsis that are homologous to the MUR3 Xyloglucan Galactosyltransferase. Plant Physiol 134(3):940–950CrossRefGoogle Scholar
  31. Li JZ, Baga M, Rossnagel BG, Legge WG, Chibbar RN (2008) Identification of quantitative trait loci for (1,3;1,4)-beta-glucan concentration in barley grain. J Cereal Sci 48(3):647–655CrossRefGoogle Scholar
  32. Marcotuli I, Houston K, Schwerdt JG, Waugh R, Fincher GB, Burton RA, Blanco A, Gadaleta A (2016) Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains. PLoS ONE 11:E0152590CrossRefGoogle Scholar
  33. Marcotuli I, Gadaleta A, Mangini G, Am Signorile, Zacheo SA, Blanco A, Simeone R, Colasuonno P (2017) Development of a high-density SNP-based linkage map and detection of QTL for β-glucans, protein content, grain yield per spike and heading time in durum wheat. Int J Mol Sci 18(6):1329CrossRefGoogle Scholar
  34. Marcotuli I, Colasuonno P, Blanco A, Gadaleta A (2018) Expression analysis of cellulose synthase-like genes in durum wheat. Sci Rep 8:15675CrossRefGoogle Scholar
  35. Marcotuli I, Colasuonno P, Cutillo S, Simeone R, Blanco A, Gadaleta A (2019) β-glucan content in a panel of Triticum and Aegilops genotypes. Genet Resour Crop Evol 66(4):897–907CrossRefGoogle Scholar
  36. Mather DE, Tinker NA, LaBerge DE, Edney M et al (1997) Regions of the genome that affect grain and malt quality in a north American two-row barley cross. Crop Sci 37:544–554CrossRefGoogle Scholar
  37. Mccleary BV, Codd R (1991) Measurement of (1–3), (1–4)-β-d-glucan in barley and oats: a streamlined enzymatic procedure. J Sci Food Agric 55:303–312CrossRefGoogle Scholar
  38. Molina-Cano JL, Moralejo M, Elia M, Munoz P, Russell JR, Perez-Vendrell AM, Ciudad F, Swanston JS (2007) QTL analysis of a cross between European and North American malting barleys reveals a putative candidate gene for beta-glucan content on chromosome 1H. Mol Breed 19(3):275–284CrossRefGoogle Scholar
  39. Molnár-Láng M, Kruppa K, Cseh A, Bucsi J, Linc G (2012) Identification and phenotypic description of new wheat–six-rowed winter barley disomic additions. Genome 55(4):302–311CrossRefGoogle Scholar
  40. Molnár-Láng M, Linc G, Szakács É (2014) Wheat–barley hybridization: the last 40 years. Euphytica 195:315–329CrossRefGoogle Scholar
  41. Molnár-Láng M, Ceoloni C, Doležel J (2015) Alien introgression in wheat. Cytogenetics, molecular biology, and genomics. Springer, ChamGoogle Scholar
  42. Munck L, Moller B, Jacobsen S, Sondergaard I (2004) Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1-3,1-4)-β-glucan in barley. J Cereal Sci 40:213–222CrossRefGoogle Scholar
  43. Nemeth C, Freeman J, Jones HD, Sparks C, Pellny TK, Wilkinson MD, Dunwell J, Andersson AA, Aman P, Guillon F, Saulnier L, Mitchell RA, Shewry PR (2010) Down-regulation of the CslF6 gene results in decreased (1,3;1,4)-β-d-glucan in endosperm of wheat. Plant Physiol 152:1209–1218CrossRefGoogle Scholar
  44. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 Mutants. P Natl Acad Sci USA 98(18):10079–10084CrossRefGoogle Scholar
  45. Shelat K, Vilaplana F, Nicholson T, Wong K, Gidley M, Gilbert R (2010) Diffusion an viscosity in arabinoxylan solutions: implications for nutrition. Carbohydr Polym 82(1):46–53CrossRefGoogle Scholar
  46. Tang J, Ohyama K, Kawaura K, Hashinokuchi H, Kamiya Y, Suzuki M, Muranaka T, Ogihara Y (2011) A new insight into application for barley chromosome addition lines of common wheat: achievement of stigmasterol accumulation. Plant Physiol 157:1555–1567CrossRefGoogle Scholar
  47. Türkösi E, Cseh A, Darkó É, Molnár-Láng M (2016) Addition of Manas barley chromosome arms to the hexaploid wheat genome. BMC Genet 17(1):87CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Pasqualina Colasuonno
    • 1
  • Ilaria Marcotuli
    • 1
  • Silvia Cutillo
    • 2
  • Rosanna Simeone
    • 2
  • Antonio Blanco
    • 2
  • Agata Gadaleta
    • 1
    Email author
  1. 1.Department of Agricultural and Environmental ScienceUniversity of Bari ‘Aldo Moro’BariItaly
  2. 2.Department of Soil, Plant and Food SciencesUniversity of Bari ‘Aldo Moro’BariItaly

Personalised recommendations