Advertisement

Genetic Resources and Crop Evolution

, Volume 66, Issue 6, pp 1295–1309 | Cite as

Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers

  • Evangelos D. Gonias
  • Ioannis Ganopoulos
  • Ifigeneia Mellidou
  • Androniki C. Bibi
  • Apostolos Kalivas
  • Photini V. Mylona
  • Maslin Osanthanunkul
  • Athanasios Tsaftaris
  • Panagiotis MadesisEmail author
  • Andreas G. DoulisEmail author
Research Article
  • 291 Downloads

Abstract

Α wide selection of tomato (Solanum lycopersicum L.) genotypes with diverse origin and breeding history (14 modern varieties, 71 landraces and 22 commercial hybrids) has been initially genotyped with a selection of highly informative simple sequence repeat (SSR) markers and two SCAR markers originally developed for resistance against two main fungal tomato diseases. Our data revealed a high level of genetic diversity across the selection, with an average number of alleles per locus (NA) equal to 9.6, and the average polymorphism information content (PIC) equal to 0.74. Further, the selected SSRs have been verified as highly polymorphic and able to discriminate different patterns within our collection, amplifying a total of 56 alleles. Cluster analysis indicated that the collection could be grouped into three clades, with most of landraces and modern varieties being clearly distinguished from hybrids, but also with each other. Breeding involve the selection of specific phenotypes, limiting the genetic variation of the population. Herein, a notable genetic loss due to breeding was detected in the modern tomato gene pool.

Keywords

Landraces SCAR marker Loss of diversity SSR markers Modern varieties 

Notes

Acknowledgements

This project was funded in part through AgroETAK to EDG (No. 3497/146) administered by HAO—DEMETER (responsible scientist, AGD) under the “Research, Technological Development & Innovation Projects”—in the framework of the Operational Program “Human Resources Development” MIS 453350. This was in turn co-financed by the European Union Social Fund and by Greece through the National Strategic Reference Framework (ESPA, Research Funding Program 2007–2013). This work was supported by Chiang Mai University.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103(8):1283–1292CrossRefGoogle Scholar
  2. Bai Y, Kissoudis C, Yan Z, Visser RGF, van der Linden G (2018) Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J 93(4):781–793PubMedCrossRefGoogle Scholar
  3. Bauchet G, Grenier S, Samson N, Bonnet J, Grivet L, Causse M (2017) Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theor Appl Genet 130(5):875–889PubMedCrossRefGoogle Scholar
  4. Benor S, Zhang M, Wang Z, Zhang H (2008) Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. J Genet Genomics 35(6):373–379PubMedCrossRefGoogle Scholar
  5. Brown AHD (1979) Enzyme polymorphism in plant populations. Theor Popul Biol 15(1):1–42CrossRefGoogle Scholar
  6. Casañas F, Simó J, Casals J, Prohens J (2017) Toward an evolved concept of landrace. Front Plant Sci 8:145PubMedPubMedCentralCrossRefGoogle Scholar
  7. Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53(377):2089–2098PubMedCrossRefGoogle Scholar
  8. Chen J, Wang H, Shen H, Chai M, Li J, Qi M, Yang W (2009) Genetic variation in tomato populations from four breeding programs revealed by single nucleotide polymorphism and simple sequence repeat markers. Sci Hortic 122(1):6–16CrossRefGoogle Scholar
  9. Corrado G, Caramante M, Piffanelli P, Rao R (2014) Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Sci Hortic 168:138–144CrossRefGoogle Scholar
  10. De Bustos A, Casanova C, Jouve N, Soler C (1999) Analysis of the genetic diversity of wild Spanish populations of the genusHordeum through the study of their endosperm proteins. Plant Syst Evol 214(1–4):235–249CrossRefGoogle Scholar
  11. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309–1321PubMedCrossRefGoogle Scholar
  12. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361CrossRefGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620CrossRefPubMedGoogle Scholar
  14. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587PubMedPubMedCentralGoogle Scholar
  15. Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31(2):93–123CrossRefGoogle Scholar
  16. Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University Press, CambridgeGoogle Scholar
  17. Ganopoulos I, Xanthopoulou A, Molassiotis A, Karagiannis E, Moysiadis T, Katsaris P, Aravanopoulos F, Tsaftaris A, Kalivas A, Madesis P (2015) Mediterranean basin Ficus carica L.: from genetic diversity and structure to authentication of a Protected Designation of Origin cultivar using microsatellite markers. Trees 29(6):1959–1971CrossRefGoogle Scholar
  18. Ganopoulos I, Xanthopoulou A, Konstantinou S, Karaoglanidis GS, Tsaliki E, Kalivas A, Madesis P (2016) Fast and accurate screening of solanum melongena with high-resolution melting analysis for resistance to fusarium wilt. Int J Veg Sci 22(2):183–189CrossRefGoogle Scholar
  19. García-Martínez S, Andreani L, Garcia-Gusano M, Geuna F, Ruiz JJ (2006) Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49(6):648–656PubMedCrossRefGoogle Scholar
  20. Gomez OJ, Blair MW, Frankow-Lindberg BE, Gullberg U (2004) Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Sci 44(4):1412–1418CrossRefGoogle Scholar
  21. Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245PubMedPubMedCentralCrossRefGoogle Scholar
  22. He C, Poysa V, Yu K (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106(2):363–373PubMedCrossRefGoogle Scholar
  23. Imam AG, Allard RW (1965) Population studies in predominantly self-pollinated species. VI. Genetic variability between and within natural populations of wild oats from differing habitats in California. Genetics 51(1):49–62PubMedPubMedCentralGoogle Scholar
  24. Jin L, Zhao L, Wang Y, Zhou R, Song L, Xu L, Cui X, Li R, Yu W, Zhao T (2019) Genetic diversity of 324 cultivated tomato germplasm resources using agronomic traits and InDel markers. Euphytica 215(4):69CrossRefGoogle Scholar
  25. Kaur S, Singh AK, Bagati S, Sharma M, Sharma S (2019) Morphological markers based assessment of genetic diversity in cultivated tomato (Solanum Lycopersicon L) Genotypes. Int J Environ Agric Biotechnol 3(2)Google Scholar
  26. Kim M-J, Mutschler MA (2005) Transfer to processing tomato and characterization of late blight resistance derived from Solanum pimpinellifolium L. L3708. J Am Soc Horticul Sci 130(6):877–884CrossRefGoogle Scholar
  27. Kim B, Hwang IS, Lee H-J, Oh C-S (2017) Combination of newly developed SNP and InDel markers for genotyping the Cf-9 locus conferring disease resistance to leaf mold disease in the tomato. Mol Breeding 37(5):59CrossRefGoogle Scholar
  28. Korir NK, Diao W, Tao R, Li X, Kayesh E, Li A, Zhen W, Wang S (2014) Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genet Mol Res 13(1):43–53PubMedCrossRefGoogle Scholar
  29. Lande R, Schemske DW (1985) The evolution of self-fertilization and inbreeding depression in plants. I. Genet Models Evol 39(1):24–40Google Scholar
  30. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129PubMedCrossRefGoogle Scholar
  31. Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77–89PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116(5):657–669PubMedCrossRefGoogle Scholar
  33. Mellidou I, Keulemans J, Kanellis AK, Davey MW (2012) Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol 12(1):239PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mutlu N, Demirelli A, Ilbi H, Ikten C (2015) Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theor Appl Genet 128(9):1791–1798PubMedCrossRefGoogle Scholar
  35. Nei M (1975) Molecular population genetics and evolution. North-Holland Publishing Company, AmsterdamGoogle Scholar
  36. Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76(10):5269–5273PubMedCrossRefGoogle Scholar
  37. Oja T (2005) Isozyme evidence on the genetic diversity, mating system and evolution of Bromus intermedius (Poaceae). Plant Syst Evol 254(3–4):199–208CrossRefGoogle Scholar
  38. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4(3):347–354PubMedCrossRefGoogle Scholar
  39. Panthee DR, Piotrowski A, Ibrahem R (2017) Mapping quantitative trait loci (QTL) for resistance to late blight in tomato. Int J Mol Sci 18(7):1589PubMedCentralCrossRefPubMedGoogle Scholar
  40. Park YH, West MAL, St. Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L). Genome 47(3):510–518PubMedCrossRefGoogle Scholar
  41. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchβ€”an update. Bioinformatics 28(19):2537–2539PubMedPubMedCentralCrossRefGoogle Scholar
  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945PubMedPubMedCentralGoogle Scholar
  43. Rivera Y, Stommel J, Dumm J, Ismaiel A, Wyenandt CA, Crouch JA (2016) First report of Colletotrichum nigrum causing anthracnose disease on tomato fruit in New Jersey. Plant Dis 100(10):2162CrossRefGoogle Scholar
  44. Sacco A, Ruggieri V, Parisi M, Festa G, Rigano MM, Picarella ME, Mazzucato A, Barone A (2015) Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS ONE 10(9):e0137139PubMedPubMedCentralCrossRefGoogle Scholar
  45. Sadeghi B, Mirzaei S (2018) First report of Alternaria leaf spot caused by Alternaria chlamydosporigena on tomato in Iran. Plant Disease (ja)Google Scholar
  46. Sardaro MLS, Marmiroli M, Maestri E, Marmiroli N (2013) Genetic characterization of Italian tomato varieties and their traceability in tomato food products. Food Sci Nutr 1(1):54–62PubMedPubMedCentralCrossRefGoogle Scholar
  47. Sim SC, Robbins MD, Van Deynze A, Michel AP, Francis DM (2011) Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106(6):927PubMedCrossRefGoogle Scholar
  48. Sun YD, Liang Y, Wu JM, Li YZ, Cui X, Qin L (2012) Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum × S. pimpinellifolium cross. Genet Mol Res 11:3696–3710PubMedCrossRefGoogle Scholar
  49. Terzopoulos PJ, Bebeli PJ (2010) Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae 126(2):138–144CrossRefGoogle Scholar
  50. Terzopoulos PJ, Walters SA, Bebeli PJ (2009) Evaluation of Greek tomato landrace populations for heterogeneity of horticultural traits. Eur J Hortic Sci 74:24–29Google Scholar
  51. Timilsina S, Adkison H, Testen AL, Newberry EA, Miller SA, Paret ML, Minsavage GV, Goss EM, Jones JB, Vallad GE (2017) A novel phylogroup of Pseudomonas cichorii identified following an unusual disease outbreak on tomato. Phytopathology 107(11):1298–1304PubMedCrossRefGoogle Scholar
  52. Tomato Genome C (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635CrossRefGoogle Scholar
  53. Toonen RJ, Hughes S (2001) Increased throughput for fragment analysis on an ABI Prism® 377 automated sequencer using a membrane comb and STRand software. Biotechniques 31(6):1320–1325PubMedGoogle Scholar
  54. Truong HTH, Tran HN, Choi HS, Park PH, Lee HE (2013) Development of a co-dominant SCAR marker linked to the Ph-3 gene for Phytophthora infestans resistance in tomato (Solanum lycopersicum). Eur J Plant Pathol 136(2):237–245CrossRefGoogle Scholar
  55. Tseng Y-C, Tillman BL, Peng Z, Wang J (2016) Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EP TM ‘113’. BMC Genet 17(1):128PubMedPubMedCentralCrossRefGoogle Scholar
  56. Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169(3):1617–1630PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wang T, Zou QD, Qi SY, Wang XF, Wu YY, Liu N, Zhang YM, Zhang ZJ, Li HT (2016) Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers. Genet Mol Res 15(3):1–12Google Scholar
  58. Yeh FC, Yang RC (2000) PopGen computer program (ver. 1.31) microsoft windows based freeware for population genetic analysisGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Evangelos D. Gonias
    • 1
  • Ioannis Ganopoulos
    • 2
  • Ifigeneia Mellidou
    • 2
  • Androniki C. Bibi
    • 1
  • Apostolos Kalivas
    • 2
  • Photini V. Mylona
    • 2
  • Maslin Osanthanunkul
    • 3
    • 4
  • Athanasios Tsaftaris
    • 5
  • Panagiotis Madesis
    • 6
    Email author
  • Andreas G. Doulis
    • 1
    Email author
  1. 1.Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (HAO)-DEMETERHeraklion, CreteGreece
  2. 2.Institute of Plant Breeding and Genetic Resources, HAO-DEMETER. ThermiThessalonikiGreece
  3. 3.Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  4. 4.Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai UniversityChiang MaiThailand
  5. 5.Perrotis College, American Farm SchoolThessalonikiGreece
  6. 6.Institute of Applied Biosciences, CERTHThessalonikiGreece

Personalised recommendations