Advertisement

β-glucan content in a panel of Triticum and Aegilops genotypes

  • Ilaria Marcotuli
  • Pasqualina Colasuonno
  • Silvia Cutillo
  • Rosanna Simeone
  • Antonio Blanco
  • Agata GadaletaEmail author
Research Article
  • 7 Downloads

Abstract

Non-starch polysaccharides are the main components of dietary fibre, not digested in the small intestine, and with beneficial effects on human health. Among cereals, barley, oats and rye have the highest β-glucan content in the grain (from 3 to 10%), while wheat, rice and corn contain percentages lower than 1%. In this paper, we report the screening of a collection of cultivated and wild wheats for β-glucan content to identify useful genotypes for wheat breeding programs. β-glucan content was determined in a panel of 43 wild and cultivated accessions of diploid, tetraploid and hexaploid wheat (Triticum and Aegilops species), grown in replicated field trials for two years. The average content of β-glucans in durum wheat was 0.51% and 0.55% in 2016 and 2017, respectively, with a range of variation between 0.39 and 0.70%; the bread wheat showed always a β-glucan content lower than 1%. The Triticum wild species showed concentrations ranging between 0.41 and 1.33%. High β-glucan contents were found in some Aegilops species (Ae. markrafii, Ae. umbellulata, Ae. biuncialis and Ae. negletta) with values up to 7.1%. On the overall, the results obtained indicated a wide genetic diversity for β-glucans in some Aegilops species, which can be considered in interspecific gene transfer programs to constitute wheat varieties with β-glucan content higher than 2%, concentration adequate for a 10–15% reduction of cholesterol in the blood.

Keywords

Genetic diversity Wild species Triticum Aegilops β-glucan 

Notes

Acknowledgements

The research project was supported by grants from Ministero dell’Istruzione, dell’Università e della Ricerca, project ‘PON-01_01145 ISCOCEM’, Puglia Region, Italy, project PSR “SaVeGraINPuglia” and research grant from ISEA Agroservice.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest on the content of manuscript and study undertaken.

References

  1. Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W et al (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720CrossRefGoogle Scholar
  2. Bálint F, Kovács G, Sutka J (2000) Origin and taxonomy of wheat in the light of recent research. Acta Agr Hung 48(3):301–313CrossRefGoogle Scholar
  3. Bingham SA, Day NE, Luben R, Ferrari P, Slimani N, Norat T et al (2003) Dietary fibre in food and pro-tection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 361:1496–1501CrossRefGoogle Scholar
  4. Burton RA, Gibeaut DM, Bacic A, Findlay K, Roberts K, Hamilton A et al (2000) Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12:691–705CrossRefGoogle Scholar
  5. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A et al (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-b-D-glucans. Science 311:1940–1942CrossRefGoogle Scholar
  6. Burton RA, Collins HM, Kibble NAJ, Smith JA, Shirley NJ, Jobling SA et al (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-ß-D-glucans and alters their fine structure. Plant Biotec J 9(2):117–135CrossRefGoogle Scholar
  7. Clayton SD, Renvoize SA (1986) Genera Graminum, Grasses of the World, Distributed for Royal Botanic Gardens, Kew bulletin. Additional series; 13, Kew, London, pp 1–389Google Scholar
  8. Colasuonno P, Lozito ML, Marcotuli I, Nigro D, Giancaspro A, Mangini G, De Vita P, Mastrangelo AM, Pecchioni N, Houston K, Simeone R, Gadaleta A, Blanco A (2017) The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics.  https://doi.org/10.1186/s12864-016-3395-6 Google Scholar
  9. Collins HM, Burton RA, Topping DL, Liao ML, Bacic A, Fincher GB (2010) Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chem 87:272–282CrossRefGoogle Scholar
  10. Cseh A, Kruppa K, Molnár I, Rakszegi M, Doležel J, Molnár-Láng M (2011) Characterization of a new 4BS.7HL wheat/barley translocation line using GISH, FISH and SSR markers and its effect on the b-glucan content of wheat. Genome 54:795–804CrossRefGoogle Scholar
  11. Cseh A, Soós V, Rakszegi M, Türkösi E, Balázs E, Molnár-Láng M (2013) Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat b-glucan content. Ann Appl Biol 163:142–150CrossRefGoogle Scholar
  12. Danilova TV, Akhunova AR, Akhunov ED, Friebe B, Gill BS (2017) Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). Plant J 92:317–330CrossRefGoogle Scholar
  13. Dvorak J, McGuire PE, Cassidy B (1988) Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689CrossRefGoogle Scholar
  14. Elodie R, Molnár I, Doležel J (2015) Genomics of wild relatives and alien introgressions. In: Molnár-Láng M, Ceoloni C, Dolezel J (eds) Alien Introgression in Wheat. Springer International Publishing, Switzerland, pp 347–382Google Scholar
  15. Eticha F, Grausgruber H, Berghoffer E (2010) Multivariate analysis of agronomic and quality traits of hullless spring barley (Hordeum vulgare L.). J Plant Breed Crop Sci 2:81–95Google Scholar
  16. Farooq S (2004) Salt tolerance in Aegilops species: a success story from research and production to large-scale utilization of salt-tolerant wheats. Prospects of saline agriculture in the Arabian Peninsula. Amheerst Scientific Publishers, Massachusetts, pp 121–134Google Scholar
  17. Feldman M (2001a) Origin of cultivated wheat. The World Wheat Book. Lavoisier Publishing, France, pp 3–56Google Scholar
  18. Feldman M (2001b) The origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Lavoisier Tech & Doc, Paris, pp 3–56Google Scholar
  19. Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crops, 2nd edn. Longman Scientific, London, pp 184–192Google Scholar
  20. Ferguson LR, Harris PJ (2003) The dietary fibre debate: more food for thought. The Lancet 361:1487–1488CrossRefGoogle Scholar
  21. Giancaspro A, Giove SL, Zito D, Blanco A, Gadaleta A (2016) Mapping QTLs for Fusarium head blight resistance in an interspecific wheat population. Front Plant Sci.  https://doi.org/10.3389/fpls.2016.01381 Google Scholar
  22. Gorham J (1990a) Salt tolerance in the Triticeae: K/Na discrimination in Aegilops species. J Exp Bot 41:615–621CrossRefGoogle Scholar
  23. Gorham J (1990b) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J Exp Bot 41:623–627CrossRefGoogle Scholar
  24. Haider N (2013) The origin of the B-genome of bread wheat (Triticum aestivum L.) (a review). Russian J Genet 49(3):263–274CrossRefGoogle Scholar
  25. Hasler CM (1999) Functional foods: their role in disease prevention and health promotion. Institute of Food TechnologistsGoogle Scholar
  26. Limberger-Bayer VM, de Francisco A, Chan A, Oro T, Ogliari PJ, Barreto PLM (2014) Barley β-glucans extraction and partial characterization. Food Chem 154:84–89CrossRefGoogle Scholar
  27. Marcotuli I (2015) Genetic analysis of dietary fibre in wheat. Retrieved from Central National Library of Florence (Italy) databaseGoogle Scholar
  28. Marcotuli I, Houston K, Schwerdt JG, Waugh R, Fincher GB, Burton RA et al (2016) Genetic diversity and genome wide association study of b-glucan content in tetraploid wheat grains. PLoS ONE 11:e0152590CrossRefGoogle Scholar
  29. Marcotuli I, Gadaleta A, Mangini G, Signorile AM, Zacheo SA, Blanco A, Simeone R, Colasuonno P (2017) Development of a high-density SNP-based linkage map and detection of QTL for beta-glucans, protein content, grain yield per spike and heading time in durum wheat. Int J Mol Sci 18:1329CrossRefGoogle Scholar
  30. Marcotuli I, Colasuonno P, Blanco A, Gadaleta A (2018) Expression analysis of cellulose synthase-like genes in durum wheat. Sci Rep.  https://doi.org/10.1038/s41598-018-34013-6 Google Scholar
  31. McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 9 ‘AC Domain’. Genome 48:870–883CrossRefGoogle Scholar
  32. McCleary BV, Codd R (1991) Measurement of (1–3), (1–4)-β-D-glucan in barley and oats: a streamlined enzymatic procedure. J Sci Food Agric 55:303–312CrossRefGoogle Scholar
  33. McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89CrossRefGoogle Scholar
  34. Molnár-Láng M, Kruppa K, Cseh A, Bucsi J, Linc G (2012) Identification and phenotypic description of new wheat—six-rowed winter barley disomic additions. Genome 55:302–311CrossRefGoogle Scholar
  35. Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642CrossRefGoogle Scholar
  36. Peterson DM, Wesenberg DM, Burrup DE, Erickson CA (2005) Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci 45:1249–1255CrossRefGoogle Scholar
  37. Pritchard JR, Lawrence GJ, Larroque O, Li Z, Laidlaw HKC, Morell MK, Rahman S (2011) A survey of β-glucan and arabinoxylan content in wheat. J Sci Food Agric 91(7):1298–1303CrossRefGoogle Scholar
  38. Rakszegi M, Molnar I, Lovegrove A, Darko E, Farkas A, Lang L, Bedo Z, Dolezel J, Molnar-Lang M, Shewry P (2017) Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front Plant Sci 8:1529CrossRefGoogle Scholar
  39. Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498CrossRefGoogle Scholar
  40. Rudi H, Uhlen AK, Harstad OM, Munck L (2006) Genetic variability in cereal carbohydrate compositions and potentials for improving nutritional value. Anim Feed Sci Tech 130(1–2):55–65CrossRefGoogle Scholar
  41. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis ixr1 mutants. Proc Natl Acad Sci USA 98:10079–10084CrossRefGoogle Scholar
  42. Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19CrossRefGoogle Scholar
  43. Türkösi E et al (2016) Addition of Manas barley chromosome arms to the hexaploid wheat genome. BMC Genet 17(1):87CrossRefGoogle Scholar
  44. Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University papers, The Netherlands, pp 1–512Google Scholar
  45. Welch RW, Lloyd JD (1989) Kernel (1,3;1,4)-beta-D-glucan content of oat genotypes. J Cereal Sci 9(1):35–40CrossRefGoogle Scholar
  46. Wood PJ, Weisz J, Fedec P (1991) Potential for beta-glucan enrichment in brans derived from oat (Avena Sativa L.) cultivars of different (1,3;1,4)-beta-D-glucan concentrations. Cereal Chem 68(1):48–51Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ilaria Marcotuli
    • 1
  • Pasqualina Colasuonno
    • 1
  • Silvia Cutillo
    • 2
  • Rosanna Simeone
    • 2
  • Antonio Blanco
    • 2
  • Agata Gadaleta
    • 1
    Email author
  1. 1.Department of Agricultural and Environmental ScienceUniversity of Bari ‘Aldo Moro’BariItaly
  2. 2.Department of Soil, Plant and Food SciencesUniversity of Bari ‘Aldo Moro’BariItaly

Personalised recommendations