Genetic diversity of Aegilops L. species from Azerbaijan and Georgia using SSR markers
- 153 Downloads
Abstract
Five microsatellite (SSR) markers were used to evaluate the genetic diversity of six Aegilops species from Azerbaijan and Georgia. A total of 39 alleles were generated with an average of 7.8 alleles per primer. Twenty markers were species-specific and 6 were accession-specific. The transferability of SSR markers across six species was 100%, with exception of gwm210. The mean polymorphism information content (PIC) and expected heterozygosity (He) values for the entire collection were 0.688 and 0.725, respectively. The average PIC value was the highest in Ae. biuncialis accessions (0.55). The genetic distance (GD) indices, based on five SSR markers, ranged from 0 to 0.83, with a mean value of 0.47. The highest genetic similarity was noted between Ae. neglecta and Ae. triuncialis (GD = 0.26), and the lowest between Ae. neglecta and Ae. tauschii (GD = 0.66). The dendrogram created based on SSR data grouped 72 Aegilops accessions into six clusters according to their taxonomic classification. The accessions from the same province were often placed in the same subclusters, indicating that grouping based on genetic parameters was closely related to the geographic region within countries. The PCoA analysis could differentiate Aegilops accessions according to their species and confirmed subgrouping obtained by cluster analysis.
Keywords
Aegilops Species SSR Genetic diversity Genetic relationshipNotes
Funding
Funding was provided by Norman Borlaug Fellowship, Fulbright fellowship.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- Abbasov M, Akparov Z, Gross T, Babayeva S, Izzatullayeva V, Hajiye E, Rustamov K, Gross P, Tekin M, Akar T, Chao S (2018) Genetic relationship of diploid wheat (Triticum spp.) species assessed by SSR markers. Genet Resour Crop Evol:1–13Google Scholar
- Aghaee-Sarbarzeh M, Harjit S, Dhaliwal HS (2001) A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breed 120:259–261CrossRefGoogle Scholar
- Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) PhI-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127(3):377–382CrossRefGoogle Scholar
- Aliyev RT, Abbasov MA, Mammadov AC (2007) Genetic identification of diploid and tetraploid wheat species with RAPD markers. Turk J Biol 31(3):173–180Google Scholar
- Alnaddaf LM, Moualla MY, Haider N (2012) The Genetic Relationships among Aegilops L. and Triticum L. species. Asian J Agric Sci 4(5):352–367Google Scholar
- Babayeva S, Akparov Z, Abbasov M, Mammadov A, Zaifizadeh M, Street K (2009) Diversity analysis of Central Asia and Caucasian lentil (Lens culinaris Medik.) germplasm using SSR fingerprinting. Genet Resour Crop Evol 56(3):293CrossRefGoogle Scholar
- Badaeva ED, Amosova AV, Muravenko OV, Samatadze TE, Chikida NN, Zelenin AV, Friebe B, Gill BS (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190CrossRefGoogle Scholar
- Bertin P, Grégoire D, Massart S, De Froidmont D (2004) High level of genetic diversity among spelt germplasm revealed by microsatellite markers. Genome 47(6):1043–1052CrossRefGoogle Scholar
- Bordbar F, Rahiminejad MR, Saeidi H, Blattner FR (2011) Phylogeny and genetic diversity of D-genome species of Aegilops and Triticum (Triticeae, Poaceae) from Iran based on microsatellites, ITS, and trnL-F. Plant Syst Evol 291:117–131CrossRefGoogle Scholar
- Caldwell K, Dvorak J, Lagudah ES, Akhunov E, Luo M-C, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D genome diploid ancestor. Genetics 167:941–947CrossRefGoogle Scholar
- Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030CrossRefGoogle Scholar
- Chee PW, Lavin M, Talbert LE (1995) Molecular analysis of evolutionary patterns in U genome wild wheats. Genome 38:290–297CrossRefGoogle Scholar
- Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2008) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet Resour Crop Evol 55(6):849–859CrossRefGoogle Scholar
- Dadzie AM, Livingstone DS, Opoku SY, Takrama J, Padi F, Offei SK, Danquah EY, Motamayor JC, Schnell RJ, Kuhn DN (2013) Conversion of microsatellite markers to single nucleotide polymorphism (SNP) markers for genetic fingerprinting of Theobroma cacao L. J Crop Improv 27:215–241CrossRefGoogle Scholar
- Dubcovsky J, Dvorak J (1995) Genome identification of the Triticum crassum complex (Poaceae) with the restriction patterns of repeated nucleotide sequences. Am J Bot 82:131–140CrossRefGoogle Scholar
- Dvorak J, Luo MC, Yang ZL (1998) Genetic evidence on the origin of Triticum aestivum L. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. Proceedings of Harlan symposium. ICARDA, Aleppo, pp 235–251Google Scholar
- Ehtemam MH, Rahiminejad MR, Saeidi H, Tabatabaei BES, Krattinger SG, Keller B (2010) Relationships among the A Genomes of Triticum L. Species as evidenced by SSR markers, in Iran. Int J Mol Sci 11:4309–4325CrossRefGoogle Scholar
- Eldarov M, Aminov N, van Slageren M (2015) Distribution and ecological diversity of Aegilops L. in the greater and lesser Caucasus regions of Azerbaijan. Genet Resour Crop Evol 62(2):265–273CrossRefGoogle Scholar
- Gandhi HT, Vales MI, Watson CJ, Mallory-Smith CA, Mori N, Rehman M, Zemetra RS, Riera-Lizarazu O (2005) Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica. Theor Appl Genet 111(3):561–572CrossRefGoogle Scholar
- Gascuel O (1997) Concerning the NJ algorithm and its unweighted version, UNJ. In: Mathematical hierarchies and biology. DIMACS workshop, Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society vol 37, pp 149–170Google Scholar
- Gong HY, Liu AH, Wang JB (2006) Genomic evolutionary changes in Aegilops allopolyploids revealed by ISSR markers. Acta Phytotax Sin 44:286–295CrossRefGoogle Scholar
- Goryunova SV, Kochieva EZ, Chikida NN, Pukhalskyi VA (2004) Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis. Russ J Genet 40:515–523CrossRefGoogle Scholar
- Hajiyev ES, Akparov ZI, Aliyev RT, Saidova SV, Izzatullayeva VI, Babayeva SM, Abbasov MA (2015) Genetic polymorphism of durum wheat (Triticum durum Desf.) accessions of Azerbaijan. Russ J Genet 51(9):863–870CrossRefGoogle Scholar
- Hammer K (1978) Blütenökologische Merkmale und Reproduktionssystem von Aegilops tauschii Coss. (syn. Ae. squarrosa L.). Kulturpflanze 26:271–282CrossRefGoogle Scholar
- Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180CrossRefGoogle Scholar
- Hedge SG, Valkoun J, Waines JG (2002) Genetic diversity in wild and weedy Aegilops, Amblyopyrum and Secale species: preliminary survey. Crop Sci 42:608–614Google Scholar
- Henkrar F, El-Haddoury J, Ouabbou H, Nsarellah N, Iraqi D, Bendaou N, Udupa SM (2016) Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers. Sci Agric 73(2):134–141CrossRefGoogle Scholar
- Karaca M, Ince AG (2011) New non-redundant microsatellite and CAPS-microsatellite markers for cotton (Gossypium L.). Turk J Field Crops 16:172–178Google Scholar
- Karcicio M, Izbirak A (2003) Isozyme variations in some Aegilops L. and Triticum L. species collected from Central Anatolia. Turk J Bot 27(6):433–440Google Scholar
- Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H (2011) Aegilops. Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 1–76Google Scholar
- Konstantinos GT, Bebeli PJ (2010) Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Mol Phylog Evol 56:951–961CrossRefGoogle Scholar
- Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Gill BS (2007a) Characterization and mapping of cryptic alien introgressions from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389CrossRefGoogle Scholar
- Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007b) A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003CrossRefGoogle Scholar
- Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D-genome of wheat utilizing microsatellites. Genome 43:661–668CrossRefGoogle Scholar
- Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
- Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361CrossRefGoogle Scholar
- McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37(4):107–116CrossRefGoogle Scholar
- Moghaddam M, Ehdaie B, Waines G (2000) Genetic diversity in populations of wild diploid wheat (Triticum urartu Thum. ex Gandil.) revealed by isozymes markers. Genet Resour Crop Evol 47:323–334CrossRefGoogle Scholar
- Moradkhani H, Mehrabi AA, Etminan A, Pour-Aboughadareh A (2015) Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers. Plant Breed Seed Sci 71(1):81–95CrossRefGoogle Scholar
- Morin PA, Luikart G, Wayne RK (2004) The SNP workshop group SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216CrossRefGoogle Scholar
- Naghavi MR, Mardi M, Pirseyedi SM, Kazemi M, Potki P, Ghaffari MR (2007) Comparison of genetic variation among accessions of Aegilops tauschii using AFLP and SSR markers. Genet Resour Crop Evol 54:237–240CrossRefGoogle Scholar
- Naghavi MR, Aghaei MJ, Taleei AR, Omidi M, Hassani ME (2008) Genetic diversity of hexaploid wheat and three Aegilops species using microsatellite markers. https://ses.library.usyd.edu.au/bitstream/2123/3231/1/P028.pdf. Accessed 18 Nov 2018
- Naghavi MR, Aghaei MJ, Taleei AR, Omidi M, Mozafari J, Hassani ME (2009) Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers. Genet Resour Crop Evol 56:499–506CrossRefGoogle Scholar
- Nazareno AG, dos Reis MS (2011) The same but different: monomorphic microsatellite markers as a new tool for genetic analysis. Am J Bot 98(10):e265–e267CrossRefGoogle Scholar
- Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin. Accessed 18 Nov 2018
- Pester TA, Ward SM, Fenwick AL, Westra P, Nissen SJ (2003) Genetic diversity of jointed goatgrass (Aegilops cylindrica) determined with RAPD and AFLP markers. Weed Sci 51:287–293CrossRefGoogle Scholar
- Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101(1):100–106CrossRefGoogle Scholar
- Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M (2017) Insight into the genetic variability analysis and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant Biosyst 152(4):694–703CrossRefGoogle Scholar
- Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19CrossRefGoogle Scholar
- Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Gen Genom 271:91–97CrossRefGoogle Scholar
- Schneider A, Molnar I, Mornar-Lang M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19CrossRefGoogle Scholar
- Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22Google Scholar
- Stoilova T, Spetsov P (2006) Chromosome 6U from Aegilops geniculata roth carrying powdery mildew resistance in bread wheat. Breed Sci 56:351–357CrossRefGoogle Scholar
- Tuler AC, Carrijo TT, Nóia LR, Ferreira A, Peixoto AL, da Silva Ferreira MF (2015) SSR markers: a tool for species identification in Psidium (Myrtaceae). Mol Biol Rep 42(11):1501–1513CrossRefGoogle Scholar
- Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University Papers, Wageningen, NetherlandsGoogle Scholar
- Zhang XY, Wang RRC, Dong YS (1996) RAPD polymorphisms in Aegilops geniculata Roth (Ae. ovata auct. non L.). Genet Resour Crop Evol 43:429–433Google Scholar