Genetic Resources and Crop Evolution

, Volume 65, Issue 8, pp 2231–2239 | Cite as

Andromonoecy in Gynandropsis gynandra (L.) Briq. (Cleomaceae) and effects on fruit and seed production

  • Herbaud P. F. Zohoungbogbo
  • Carlos A. Houdegbe
  • Dêêdi E. O. Sogbohossou
  • Monique G. Tossou
  • Patrick Maundu
  • Eric M. Schranz
  • Allen Van Deynze
  • Jeanne Zoundjihekpon
  • Enoch G. Achigan-DakoEmail author
Research Article


Spider plant (Gynandropsis gynandra) is a traditional leafy vegetable widespread in sub-Saharan Africa and tropical Asia that is also valued for its medicinal properties. Developing a breeding program for the species requires detailed knowledge of its phenology, floral morphology and pollination system. This study investigates the effects of floral morphology and pollination mechanisms on the reproductive success in G. gynandra. The experiments were conducted in two locations in Benin. A split-plot design was used with four randomized complete blocks. Three accessions were randomly assigned to the whole plots and five treatments including natural self-pollination, hand self-pollination, geitonogamy, open pollination and hand cross-pollination were randomized over the sub-plots. We observed that individual plant exhibited 70% of staminate (male) flowers and 30% of hermaphrodite flowers. G. gynandra was andromonoecious. Open pollination and hand cross-pollination led to higher fruit and seed set. Natural self-pollination and hand self-pollination resulted in lower fruit and seed production. G. gynandra is a self-compatible and predominantly out-crossing species. Cross-pollination resulted in a significant increase in fruit set. This study set the ground for the development of improved cultivars in G. gynandra.


Andromonoecy Anthesis Gynandropsis gynandra Hermaphroditism Pollination systems 



This work was supported by the Netherland Organization for Scientific Research (NWO) through the Applied Research Funds (ARF) [W.08.270.350].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

10722_2018_687_MOESM1_ESM.xlsx (69 kb)
Supplementary material 1 (XLSX 69 kb)


  1. Achigan-Dako EG, Pasquini MW, Assogba Komlan F, N’danikou S, Yédomonhan H, Dansi A, Ambrose-Oji B (2010) Traditional vegetables in Benin. Institut National des Recherches Agricoles du Bénin. Imprimeries du CENAP, Cotonou, BeninGoogle Scholar
  2. Achigan-Dako EG, N’Danikou S, Assogba-Komlan F, Ambrose-Oji B, Ahanchede A, Pasquini MW (2011) Diversity, geographical, and consumption patterns of traditional vegetables in sociolinguistic communities in Benin: implications for domestication and utilization. Econ Bot 65(2):129–145. CrossRefGoogle Scholar
  3. Arroyo MTK, Uslar P (1993) Breeding systems in a temperate mediterranean-type climate montane sclerophyllous forest in central Chile. Bot J Linn Soc 111:83–102CrossRefGoogle Scholar
  4. Barrett SC (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284CrossRefGoogle Scholar
  5. Barrett SC, Eckert CG (1990) Current issues in plant reproductive ecology. Isr J Bot 39:5–12Google Scholar
  6. Bowers KA (1975) The pollination ecology of Solanum rostratum (Solanaceae). Am J Bot 62:633–638. CrossRefGoogle Scholar
  7. Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, OxfordGoogle Scholar
  8. Eckert CG (2000) Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 81:532–542.;2 CrossRefGoogle Scholar
  9. Ekpong B (2009) Effects of seed maturity, seed storage and pre-germination treatments on seed germination of cleome (Cleome gynandra L.). Sci Hortic 119:236–240. CrossRefGoogle Scholar
  10. Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79. CrossRefGoogle Scholar
  11. Hall JC, Sytsma KJ, Iltis HH (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am J Bot 89:1826–1842CrossRefGoogle Scholar
  12. Harder LD, Barrett SC (1995) Mating cost of large floral displays in hermaphrodite plants. Nature 373:512. CrossRefGoogle Scholar
  13. Holsinger KE (2000) Reproductive systems and evolution in vascular plants. Proc Natl Acad Sci 97:7037–7042. CrossRefPubMedGoogle Scholar
  14. Huang S-Q, Song N, Wang Q, Tang L-L, Wang X-F (2000) Sex expression and the evolutionary advantages of male flowers in an andromonoecious species, Sagittaria guyanensis subsp. lappula (Alismataceae). Acta Bot Sin 42:1108–1114Google Scholar
  15. Hutchinson J (1969) Evolution and phylogeny of flowering plants. Academic Press, LondonGoogle Scholar
  16. Iltis H (1957) Studies in the Capparidaceae III, Evolution and phylogeny of the western North American Cleomoideae. Ann Mo Bot Gard 44(1):77–119CrossRefGoogle Scholar
  17. Kamotho G, Mathenge P, Muasya R, Dullo M (2014) Effects of maturity stage, desiccation and storage period on seed quality of cleome (Cleome gynandra L.). Res Desk 3(1):419–433Google Scholar
  18. Karron J, Mitchell R, Holmquist K, Bell J, Funk B (2004) The influence of floral display size on selfing rates in Mimulus ringens. Heredity 92:242. CrossRefPubMedGoogle Scholar
  19. Kers L (2003) Capparaceae. In: Kubitzki K, Bayer C (eds) Flowering plants. Dicotyledons: Malvales, Capparales and non-betalain Caryophyllales. The families and genera of vascular plants, vol 5. Springer, Berlin, pp 36–56CrossRefGoogle Scholar
  20. Kosaka Y, Takeda S, Sithirajvongsa S, Xaydala K (2006) Plant diversity in paddy fields in relation to agricultural practices in Savannakhet Province, Laos. Econ Bot 60:49–61CrossRefGoogle Scholar
  21. Lloyd DG, Schoen DJ (1992) Self- and cross-fertilization in plants. I. Functional dimensions. Int J Plant Sci 153:358–369CrossRefGoogle Scholar
  22. Omondi EO, Debener T, Linde M, Abukutsa-Onyango M, Dinssa FF, Winkelmann T (2017) Mating biology, nuclear DNA content and genetic diversity in spider plant (Cleome gynandra) germplasm from various African countries. Plant Breed 136:578–589. CrossRefGoogle Scholar
  23. Patchell MJ, Roalson EH, Hall JC (2014) Resolved phylogeny of Cleomaceae based on all three genomes. Taxon 63:315–328CrossRefGoogle Scholar
  24. Primack RB, McCall C (1986) Gender variation in a red maple population (Acer rubrum; Aceraceae): a seven-year study of a “polygamodioecious” species. Am J Bot 73(9):1239–1248CrossRefGoogle Scholar
  25. R Core Development Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing. R version 3.2.1 Vienna, AustriaGoogle Scholar
  26. Raju AS, Rani DS (2016) Reproductive ecology of Cleome gynandra and Cleome viscosa (Capparaceae). Phytol Balc 22(1):15–28Google Scholar
  27. Richards A (1997) Plant breeding systems, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  28. Schemske DW, Lande R (1985) The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39(1):41–52CrossRefGoogle Scholar
  29. Schippers RR (2000) Africain indigenous vegetables: an overview of the cultivated species. Natural Resources Institute/ACP-EU Technical Centre for Agricultural and Rural CooperationGoogle Scholar
  30. Schoen DJ, Brown AH (1991) Whole- and part-flower self-pollination in Glycine clandestina and G. argyrea and the evolution of autogamy. Evolution 45(7):1651–1664CrossRefGoogle Scholar
  31. Stebbins GL (1974) Flowering plants: evolution above the species level. London: Arnold xviii. Illustrations. General (KR, 197500089)Google Scholar
  32. STKDA (2010) District Profile, District Medium Term Development Plan. Sawla-Tuna-Kalba District (Northern Region, Ghana)Google Scholar
  33. White F (1986) Memoire accompagnant la carte de vegetation de l’Afrique Unesco/AETFAT/UNSO. Recherches sur les Ressources Naturelles. UNESCOGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Herbaud P. F. Zohoungbogbo
    • 1
    • 2
  • Carlos A. Houdegbe
    • 1
  • Dêêdi E. O. Sogbohossou
    • 1
    • 4
  • Monique G. Tossou
    • 6
  • Patrick Maundu
    • 3
  • Eric M. Schranz
    • 4
  • Allen Van Deynze
    • 5
  • Jeanne Zoundjihekpon
    • 2
  • Enoch G. Achigan-Dako
    • 1
    Email author
  1. 1.Laboratory of Genetics, Horticulture and Seed Science, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouRepublic of Benin
  2. 2.Laboratory of Ecological Genetics, Faculty of Sciences and TechniquesUniversity of Abomey-CalaviCotonouRepublic of Benin
  3. 3.Kenya Resource Center for Indigenous Knowledge (KENRIK), Centre for BiodiversityNational Museums of KenyaNairobiKenya
  4. 4.Biosystematics GroupWageningen UniversityWageningenThe Netherlands
  5. 5.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  6. 6.Department of Plant Biology, Faculty of Sciences and TechniquesUniversity of Abomey-CalaviCotonouRepublic of Benin

Personalised recommendations