Advertisement

Genetic Resources and Crop Evolution

, Volume 65, Issue 7, pp 1995–2002 | Cite as

Complete chloroplast DNA sequences of Georgian indigenous polyploid wheats (Triticum spp.) and B plasmon evolution

  • M. Gogniashvili
  • I. Maisaia
  • A. Kotorashvili
  • N. Kotaria
  • T. Beridze
Research Article
  • 73 Downloads

Abstract

Three types of plasmon (A, B and G) are present for genus Triticum. Plasmon B is detected in polyploid species - Triticum turgidum L. and Triticum aestivum L. By now, 21 complete sequences of chloroplast DNA of the genus Triticum is published by different authors. Many inaccuracies can be detected in the sequenced chloroplast DNAs. Therefore, we found it necessary to study of plasmon B evolution to use only those sequences obtained by our method in our laboratory. Complete nucleotide sequences of chloroplast DNA of 11 representatives of Georgian wheat polyploid species were determined. Chloroplast DNA sequencing was performed on an Illumina MiSeq platform. Chloroplast DNA molecules were assembled using the SOAPdenovo computer program. Using T. aestivum L. subsp. macha var. palaeocolchicum as a reference, 5 SNPs were identified in chloroplast DNA of Georgian indigenous polyploid wheats. 38 and 56 bp inversions were observed in paleocolchicum subspecies. The phylogeny tree shows that subspecies macha, durum, carthlicum and palaeocolchicum occupy different positions. According the simplified scheme based on SNP and indel data the ancestral, female parent of all studied polyploid wheats is an unknown X predecesor, from which four lines were formed.

Keywords

Chloroplast DNA Illumina Indels Sequencing SNP Triticum 

Notes

Acknowledgements

This research was funded by Mr. Kakha Bendukidze (1956–2014) via his Knowledge Fund, a funding organization of the Free University of Tbilisi and Agricultural University of Georgia.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Bahieldin A, Al-Kordy MA, Shokry AM, Gadalla NO, Al-Hejin AMM, Sabir JSM, Hassan SM, Al-Ahmadi AA, Schwarz EN, Eissa HF, El-Domyati FM, Jansen RK (2014) Corrected sequence of the wheat plastid genome. CR Biol 337:499–502CrossRefGoogle Scholar
  3. Beridze T, Pipia I, Beck J, Hsu S-C, Gamkrelidze M, Gogniashvili M, Tabidze V, This P, Bacilieri R, Gotsiridze V, Glonti M, Schaal B (2011) Plastid DNA sequence diversity in a worldwide set of grapevine cultivars (Vitis vinifera L. subsp. vinifera). Bull Georgian Nat Acad Sci 5:98–103Google Scholar
  4. Bernhardt N, Brassac J, Kilian B, Blattner FR (2017) Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae. BMC Evol Biol 17:141CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dekaprelevich LL, Menabde VL (1932) Spelt wheats of Western Georgia (Western Transcaucasia). Bull Appl Bot Genet PI Breed 5:1–46Google Scholar
  6. Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Leningrad, St. Petersburg, p 346 (in Russian)Google Scholar
  7. Dvorak J, Luo MC (2001) Evolution of free-threshing and hulled forms of Triticum aestivum: old problems and new tools. In: Caligari PDS, Brandham PE (eds) Wheat taxonomy: the legacy of John Percival. Academic Press, London, pp 127–136Google Scholar
  8. Gamkrelidze TV, Ivanov VV (2010) Indo-European and the Indo-Europeans:a reconstruction and historical analysis of a proto-language and proto-culture. De Gruyter Mouton, Berlin, New YorkGoogle Scholar
  9. Gogniashvili M, Naskidashvili P, Bedoshvili D, Kotorashvili A, Kotaria N, Beridze T (2015) Complete chloroplast DNA sequences of Zanduri wheat (Triticum spp.). Genet Resour Crop Evol 62:1269–1277CrossRefGoogle Scholar
  10. Gogniashvili M, Jinjikhadze T, Maisaia I, Akhalkatsi M, Kotorashvili A, Kotaria N, Beridze T, Dudnikov AY (2016) Complete chloroplast genomes of Aegilops tauschii Coss. and Ae.cylindrica Host sheds light on plasmon D evolution. Curr Genet 62:791–798CrossRefPubMedGoogle Scholar
  11. Gornicki P, Zhu H, Wang J, Challa GS, Zhang Z, Gill BS, Li W (2014) The chloroplast view of the evolution of polyploid wheat. New Phytol 204:704–714CrossRefPubMedGoogle Scholar
  12. Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and xTriticosecale Wittm. Genet Resour Crop Evol 58:3–10CrossRefGoogle Scholar
  13. Katoh K, Misawa K, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066CrossRefPubMedGoogle Scholar
  14. Klimov GA (1998) Etymological dictionary of the Kartvelian languages Berlin. Mouton de Gruyter, New YorkCrossRefGoogle Scholar
  15. Kuckuck H (1979) On the origin of Triticum carthlicum Nevski (Triticum persicum Vav.). Wheat Inf Serv 50:1–5Google Scholar
  16. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967CrossRefPubMedGoogle Scholar
  17. Liu C, Shi Y, Zhu Y, Chen H, Zhang J, Lin X, Guan X (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom 13:715CrossRefGoogle Scholar
  18. Loskutov IG (1999) Vavilov and his institute: a history of the world collection of plant genetic resources in Russia, IPGRI, e-libraryGoogle Scholar
  19. Matsuoka Y (2011) Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52:750–764CrossRefPubMedGoogle Scholar
  20. Matsuoka Y, Mori N, Kawahara T (2005) Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor Appl Genet 111:265–271CrossRefPubMedGoogle Scholar
  21. Menabde VL (1948) Wheats of Georgia. edition of academy of science of Georgian SSR, Tbilisi (in Russian)Google Scholar
  22. Menabde VL (1961) Cultivated flora of Georgia. In: Sakhokia MF (ed) Botanical excursions over Georgia. Publishing House of the Academy of Sciences of Georgian SSR, Tbilisi, pp 69–76 (in Russian)Google Scholar
  23. Mosulishvili M, Bedoshvili D, Maisaia I (2017) A consolidated list of Triticum species and varieties of Georgia to promote repatriation of local diversity from foreign gene banks. Ann Agrar Sci 15:61–70CrossRefGoogle Scholar
  24. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genom 266:740–746CrossRefGoogle Scholar
  25. Ozkan H, Willcox G, Graner A, Salamini F, Kilian B (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58:11–53CrossRefGoogle Scholar
  26. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277CrossRefPubMedGoogle Scholar
  27. Tabidze V, Baramidze G, Pipia I, Gogniashvili M, Ujmajuridze L, Beridze T, Hernandez AG, Schaal B (2014) The complete chloroplast DNA sequence of eleven grape cultivars. Simultaneous resequencing methodology. J Int Sci Vigne Vin 48:99–109Google Scholar
  28. Tsunewaki K(1968) Origin and phylogenetic differentiation of common wheat revealed by comparative gene analysis. In: Finlay KW, Shepherd KW (eds) Third International Wheat Genetics. Canberra, Australia, pp 71–85Google Scholar
  29. Wang G-Z, Miyahita NT, Tsunewaki K (1997) Plasmon analyses of Triticum (wheat) and Aegilops: PCR—single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci USA 94:14570–14577CrossRefPubMedGoogle Scholar
  30. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics 25:1189–1191CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92:1887–1898CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • M. Gogniashvili
    • 1
  • I. Maisaia
    • 2
  • A. Kotorashvili
    • 3
  • N. Kotaria
    • 3
  • T. Beridze
    • 1
  1. 1.Institute of Molecular GeneticsAgricultural University of GeorgiaTbilisiGeorgia
  2. 2.Institute of BotanyIlia State UniversityTbilisiGeorgia
  3. 3.National Centre for Disease Control and Public HealthTbilisiGeorgia

Personalised recommendations