Genetic Resources and Crop Evolution

, Volume 65, Issue 6, pp 1725–1732 | Cite as

Molecular cytogenetic identification of newly synthetic Triticum kiharae with high resistance to stripe rust

  • Xiaojuan Liu
  • Minghu Zhang
  • Xin Liu
  • Hongyu Li
  • Ming Hao
  • Shunzong Ning
  • Zhongwei Yuan
  • Dengcai Liu
  • Bihua Wu
  • Xuejiao Chen
  • Wenjie Chen
  • Lianquan Zhang
Research Article


Six new amphiploids, Triticum kiharae Dorof. et Migusch. (2n = 6x = 42, AtAtGGDD), are described in this study. They were developed by the chromosome doubling of F1 hybrid crosses between Triticum timopheevii Zhuk. (AtAtGG) with high resistance to stripe rust and Aegilops tauschii Cosson (DD) by colchicine treatment. These amphiploids showed a high level of fertility of 68–80% and exhibited relatively normal chromosome pairing in meiotic metaphase I. Individual chromosomes of T. kiharae could be identified by multicolor fluorescence in situ hybridization using the combination of oligonucleotides probes Oligo-pSc119.2-1, Oligo-pTa535-1, and Oligo-pTa71-2. T. kiharae exhibited high resistance to predominant stripe rust races CYR34, CYR31, CYR32, CYR33, and SY11-4 both during the seedling and adult stages. However, high molecular weight glutenin subunits from Ae. tauschii parents were only partially expressed in the T. kiharae background. These T. kiharae lines provide novel materials to widen the genetic diversity of the common wheat gene pool.


Amphiploid FISH Triticum timopheevii Triticum kiharae Aegilops tauschii 



This research was supported by the National Key Research and Development Program (2016YFD0102002), the National Natural Science Foundation of China (31671682, 31671689) and the Open Project of Qinghai Provincial Key Laboratory of Crop Molecular Breeding (2017-ZJ-Y14). We thank Sarah Williams, PhD, from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.


  1. Badaeva ED, Badaev NS, Enno TM, Zeller FJ, Peusha HO (1995) Chromosome substitution in progeny of hybrids Triticum aestivum × Triticum timopheevii, resistant to brown rust and powdery mildew. Russ J Genet 31:75–77Google Scholar
  2. Cao W, Armstrong K, Fedak G (2000) A synthetic zhukovskyi wheat. Wheat Inf Serv 91:30–32Google Scholar
  3. Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32CrossRefPubMedGoogle Scholar
  4. Goncharov NP, Bannikova SV, Kawahara T (2007) Wheat artificial amphiploids involving the Triticum timopheevii genome: their studies, preservation and reproduction. Genet Resour Crop Evol 54:1507–1516CrossRefGoogle Scholar
  5. Han DJ, Wang QL, Chen XM, Zeng QD, Wu JH, Xue WB, Zhan GM, Huang LL, Kang ZS (2015) Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin. China. Plant Dis 99:754–760CrossRefGoogle Scholar
  6. Järve K, Jakobson I, Enno T (2002) Tetraploid wheat species Triticum timopheevii and Triticum militinae in common wheat improvement. Acta Agron Hung 50:463–477CrossRefGoogle Scholar
  7. Kostov D (1936) Investigation of polyploid plants. XI. Amphiploid T. timopheevii Zhuk. × T. monococcum L. Dokl Acad Sci 1:32–36 (in Russian)Google Scholar
  8. Liu M, Zhang CZ, Yuan CL, Zhang LQ, Huang L, Wu JJ, Wang JR, Zheng YL, Zhang HG, Liu DC, Fu DL (2013) Stripe Rust Resistance in Aegilops tauschii Germplasm. Crop Sci 53:2014–2020CrossRefGoogle Scholar
  9. Ma H, Singh RP, Mujeeb-Kazi A (1995) Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica 83(2):87–93CrossRefGoogle Scholar
  10. McFadden ES, Sears ER (1947) The genome approach in radical wheat breeding. J Am Soc Agron 39(11):1011–1026CrossRefGoogle Scholar
  11. McIntosh RA, Gyárfás J (1971) Triticum timopheevii as a source of resistance to wheat stem rust. Z Pflanzenzüchtg 66:240–248Google Scholar
  12. Mikó P, Megyeri M, Farkas A, Molnár I, Molnár-Láng M (2015) Molecular cytogenetic identification and phenotypic description of a new synthetic amphiploid, Triticum timococcum (AtAtGGAmAm). Genet Resour Crop Evol 62:55–66CrossRefPubMedGoogle Scholar
  13. Peusha HO, Enno TM, Priilinn O (1996) Genetic analysis of disease resistance in wheat hybrids, derivatives of Triticum timopheevii and Triticum militinae. Acta Agron Hung 44:237–244Google Scholar
  14. Qiao DY, Sun YZ, Dong YC, Chen Q (1986) A new synthetic amphiploid Triticum kiharae, (AAGGDD). China Seed Ind 2:48–51 (in Chinese)Google Scholar
  15. Tang ZX, Yang ZJ, Fu SL (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55(3):313–318CrossRefPubMedGoogle Scholar
  16. Timonova EM, Leonova IN, Röder MS, Salina EA (2013) Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Mol Breed 31:123–136CrossRefGoogle Scholar
  17. Wang Y, Xie J, Zhang H, Guo B, Ning S, Chen Y, Lu P, Wu Q, Li M, Zhang D, Guo G, Zhang Y, Liu D, Zou S, Tang J, Zhao H, Wang X, Li J, Yang W, Cao T, Yin G, Liu Z (2017) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130(10):2191–2201CrossRefPubMedGoogle Scholar
  18. Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301CrossRefGoogle Scholar
  19. Wellings C, Bariana H (2004) Assessment scale for recording stripe rust responses in field trials. Cereal Rust Report Season 2004, Plant Breeding Institute-Cereal Rust Laboratory, University of Sydney vol 2, issue 2, pp 1–2Google Scholar
  20. Yan ZH, Zheng YL, Wan YF, Liu KF, Wang DW (2001) Identification of novel High-molecular-weight glutenin subunits from Aegilops tauschii. J Sichuan Agric Univ 19(3):197–199 (in Chinese)Google Scholar
  21. Yan ZH, Wan YF, Liu KF, Zheng YL, Wang DW (2002) Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Sci Bull 47(3):220–225CrossRefGoogle Scholar
  22. Zeng DY, Luo JT, Li ZL, Chen G, Zhang LQ, Ning SZ, Yuan ZW, Zheng YL, Hao M, Liu DC (2016) High transferability of homoeolog-specific markers between bread wheat and newly synthesized hexaploid wheat lines. PLoS ONE 11(9):e0162847CrossRefPubMedPubMedCentralGoogle Scholar
  23. Zhang LQ, Yen Y, Zheng YL, Liu DC (2007) Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod 20:159–166CrossRefGoogle Scholar
  24. Zhao LB, Ning SZ, Yu JJ, Hao M, Zhang LQ, Yuan ZW, Zheng YL, Liu DC (2016) Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat. Breed Sci 66(4):522–529CrossRefPubMedPubMedCentralGoogle Scholar
  25. Zhukovsky PM (1924) Wild emmer in Georgia—Triticum dicoccum Schrank dicoccoides Koern. Notes Appl Sci Dept Tiflis Bot Gard 3:1–3 (in Russian)Google Scholar
  26. Zhukovsky PM (1971) Cultivated plants and their wild relatives. systematics, geography, cytogenetics, immunity, origin and use. Kolos, Leningrad, p 121Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityChengduPeople’s Republic of China
  2. 2.Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningPeople’s Republic of China

Personalised recommendations