Advertisement

Genetic Resources and Crop Evolution

, Volume 65, Issue 6, pp 1699–1709 | Cite as

Secondary metabolites content may clarify the traditional selection process of the greater yam cultivars (Dioscorea alata L.)

  • V. Lebot
  • R. Malapa
  • K. Abraham
  • T. Molisalé
  • N. Van Kien
  • B. Gueye
  • J. Waki
Research Article
  • 89 Downloads

Abstract

Dioscorea alata L. is one of the most widely grown and economically important yam species. Hundreds of accessions are maintained ex situ in germplasm collections and have been characterized with descriptors but new tools are still needed to assess tuber chemical composition. The objectives of the present study were to analyze saponins and catechins profiles in 388 D. alata cultivars (landraces) from distant geographical sources (Nigeria, Vietnam, Papua New Guinea and Vanuatu) and to compare them with those of 162 selected hybrids. The relationships between these compounds and tuber flesh oxidation and browning were also studied in order to understand their possible role in the ancient cultivars selection process. Dioscin and gracillin, the most documented Dioscorea saponins, were absent among the 550 D. alata cultivars and hybrids analyzed using HP-TLC. Two saponins and four catechins were quantitated, including epicatechin. Mean total catechins and saponins values were very low for most cultivars and higher mean values were found in hybrids. Correlation coefficients revealed possible relationships between total saponins and catechins contents with speed of oxidation, presence of mucilage and flour colour. Distribution of cultivars values within each country indicate that these were mostly selected for their low saponins and catechins contents through simple visual assessment. Metabolite profiles can be used to improve the phenotyping efficiency of D. alata hybrids generated through conventional breeding.

Keywords

Anti-nutritional compounds Catechins Dioscorea alata Domestication Saponins Tuber quality 

Notes

Acknowledgements

This work was financially supported by the ‘Agropolis Fondation’ under reference ID 1403-023 through the ‘Investissements d’avenir’ programme (Labex Agro: ANR-10-LABX-0001-01). Special thanks are due to Rosanna Molisalé and Madeleine Shem for assistance in preparing samples and methanolic extracts.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

10722_2018_647_MOESM1_ESM.docx (58 kb)
Supplementary material 1 (DOCX 58 kb)

References

  1. Abraham K, Nemorin A, Lebot V, Arnau G (2013) Meiosis and sexual fertility of autotetraploid clones of greater yam Dioscorea alata L. Genet Resour Crop Evol 60:819–823CrossRefGoogle Scholar
  2. Akissoe N, Mestres C, Hounhouigan J, Nago M (2005) Biochemical origin of browning during the processing of fresh yam (Dioscorea spp.) into dried product. J Agric Food Chem 53:2552–2557CrossRefPubMedGoogle Scholar
  3. Arnau G, Bhattacharjee R, Sheela MN, Chair H, Malapa R, Lebot V, Abraham K, Perrier X, Petro D, Penet L, Pavis C (2017) Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers. PLoS ONE 12(3):e0174150CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asiedu R, Sartie A (2010) Crops that feed the world: yams for income and food security. Food Sec 2:205–315CrossRefGoogle Scholar
  5. Burkill IH (1951) Dioscoreaceae: flora Malesiana. In: Hansen B (ed) Dioscoreaceae: studies in the flora of Thailand. Dansk Botanisk Arkiv, Copenhagen, pp 461–463Google Scholar
  6. Chaïr H, Sardos J, Supply A, Mournet P, Malapa R, Lebot V (2016) Plastid phylogenetics of Oceania yams (Dioscorea spp., Dioscoreaceae) reveals natural interspecific hybridization of the greater yam (D. alata). Bot J Linn Soc 180(3):319–333CrossRefGoogle Scholar
  7. Coursey DG (1967) Yams: an account of the nature, origins, cultivation and utilisation of the useful members of the Dioscoreaceae. Tropical Agriculture Series, LongmansGoogle Scholar
  8. Degras LM (1993) The yam: a tropical root crop. MacMillan Press Ltd, LondonGoogle Scholar
  9. Dey P, Chowdhuri SR, Sarkar MP, Chaudhur TL (2016) Evaluation of anti-inflammatory activity and standardisation of hydro-methanol extract of underground tuber of Dioscorea alata. Pharm Biol 54(8):1474–1482CrossRefPubMedGoogle Scholar
  10. Didier AC, Hubert KK, Djè KM, Koné FM, Yapi AYD, Kouadio JPN, Kouamé LP (2014) Assessment of some antinutritional compounds and some organic acids of “bètè-bètè” yam (Dioscorea alata) tubers as influenced by boiling times. Asian J Appl Sci 2(1):494–504Google Scholar
  11. Dilworth L, Brown K, Wright R, Oliver M, Hall S, Asemota H (2012) Antioxidants, minerals and bioactive compounds in tropical staples. Afr J Food Sci Technol 3(4):90–98Google Scholar
  12. Dufie WMF, Oduro I, Ellis WO, Asiedu R, Maziya-Dixon B (2013) Potential health benefits of water yam (Dioscorea alata). Funct Food 4:1496–1501CrossRefGoogle Scholar
  13. Egesi CN, Asiedu R, Egunjobi JK, Bokanga M (2003) Genetic diversity of organoleptic properties in water yam (Dioscorea alata L.). J Sci Food Agric 83:858–865CrossRefGoogle Scholar
  14. Ezeocha VC, Ojimelukwe PC (2012) The impact of cooking on the proximate composition and anti-nutritional factors of water yam (Dioscorea alata). J Stored Prod Postharv Res 3(13):172–176Google Scholar
  15. Hsu KM, Tsai JL, Chen MY, Ku HM, Liu SC (2013) Molecular phylogeny of Dioscorea (Dioscoreaceae) in East and Southeast Asia. Blumea 58:21–27CrossRefGoogle Scholar
  16. IPGRI/IITA (1997) Descriptors for Yam (Dioscorea spp.). International Institute of Tropical Agriculture, Ibadan, Nigeria/International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  17. Jesus M, Martins APJ, Gallardo E, Silvestre S (2016) Diosgenin: recent highlights on pharmacology and analytical methodology. J Anal Met Chem.  https://doi.org/10.1155/2016/4156293 Google Scholar
  18. Kwon YK, Jie EY, Sartie A, Kim DJ, Liu JR, Min BW, Kim SW (2015) Rapid metabolomics discrimination and prediction of dioscin content from African yam tubers using Fourier transform-infrared spectroscopy combined with multivariate analysis. Food Chem 166:389–396CrossRefPubMedGoogle Scholar
  19. Maithili V, Dhanabal SP, Manhendran S, Vavivelan R (2011) Antidiabetic activity of ethanolic extract of tubers of Dioscorea alata L. in alloxan induced diabetic rats. Indian J Pharm 43(4):455–459CrossRefGoogle Scholar
  20. Martin FW (1976) Tropical yams and their potential. Part 3. Dioscorea alata. Agriculture handbook No. 46, USDA-USAID, Washington DCGoogle Scholar
  21. Martin FW, Rhodes AM (1977) Intra-specific classification of Dioscorea alata. Trop Agric (Trinidad) 54(1):1–13Google Scholar
  22. Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265.  https://doi.org/10.3390/molecules191016240 CrossRefPubMedGoogle Scholar
  23. Narkhede A, Gill J, Thakur K, Singh D, Singh E, Kulkarni O, Harsulkar A, Jagtap S (2013) Total polyphenolic content and free radical quenching potential of Dioscorea alata L. tubers. Int J Pharm Pharmaceut Sci 5(3):866–869Google Scholar
  24. O’Connor S, Barham A, Aplin K, Dobney K, Fairbairn A, Richards M (2011) The power of paradigms: examining the evidential basis for early to mid-holocene pigs and pottery in melanesia. J Pac Archaeo 2(2):1–25Google Scholar
  25. Olubobokun TH, Aluko EO, Iyare E, Anyaehie UB (2013) Dioscorea alata L. reduces body weight by reducing food intake and fasting blood glucose level. Br J Med Med Res 3(4):1871–1880CrossRefGoogle Scholar
  26. Ozo ON, Caygill JC, Coursey DG (1984) Phenolics of five yam (Dioscorea) species. Phytochemistry 23(2):329–411CrossRefGoogle Scholar
  27. Price EJ, Bhattacharjee R, Lopez-Monte A, Fraser PD (2017) Metabolite profiling of yam (Dioscorea spp.) accessions for use in crop improvement programmes. Metabolomics 13:144.  https://doi.org/10.1007/s11306-017-1279-7 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sautour M, Mittaine-Offer AC, Lacaille-Dubois MA (2007) The Dioscorea genus: a review of bioactive steroid saponins. J Nat Med 61:91–101CrossRefGoogle Scholar
  29. Scarcelli N, Tostain S, Vigouroux Y, Agbangla C, Dainou O, Pham JL (2006) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop: the case of yam in Benin. Mol Ecol 15(9):2421–2431CrossRefPubMedGoogle Scholar
  30. Shah HJ, Lele SS (2012) Extraction of diosgenin, a bioactive compound from natural source Dioscorea alata var. purpurea. J Anal Bioanal Tech 3:141.  https://doi.org/10.4172/2155-9872.1000141 CrossRefGoogle Scholar
  31. Simmonds MSJ (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30CrossRefPubMedGoogle Scholar
  32. Summerhayes GR, Leavesley M, Fairbairn A, Mandui H, Field J, Ford A, Fullagar R (2010) Human adaptation and plant use in highland New Guinea 49,000 to 44,000 years ago. Science 330:78–81CrossRefPubMedGoogle Scholar
  33. Udensi EA, Oselebe HO, Onuoha AU (2010) Antinutritional assessment of D. alata varieties Pakistan. J Nut 9(2):179–181Google Scholar
  34. Vanden Broucke H, Mournet P, Vignes H, Chair H, Malapa R, Duval MF, Lebot V (2015) Somaclonal variants of taro (Colocasia esculenta Schott) and yam (Dioscorea alata L.) are incorporated into farmers’ varietal portfolios in Vanuatu. Genet Res Crop Evol 63(3):495–511Google Scholar
  35. Viji MO, Neeba W, Veena VV (2016) Phytochemical profiling of tuber extracts of Dioscorea alata. VISTAS 5(1):133–137Google Scholar
  36. Viruel J, Segarra-Moragues JG, Raz L, Forest F, Wilkin P, Sanmartin I, Catalan P (2016) Late cretaceous–early eocene origin of yams (Dioscorea, Dioscoreaceae) in the Laurasian Palaearctic and their subsequent Oligocene-Miocene diversification. J Biogeogr 43:750–762CrossRefGoogle Scholar
  37. Wilkin P, Thapyai C, Chayamarit K (2007) Lectotypification of Dioscorea L. (Dioscoreaceae) names from Thailand. Kew Bull 62:251–258Google Scholar
  38. Wu ZG, Li XX, Lin XC, Jiang W, Tao ZM, Nitin M, Fan CY, Bao XQ (2014) Genetic diversity analysis of yams (Dioscorea spp.) cultivated in China using ISSR and SRAP markers. Genet Res Crop Evol 61:639–650CrossRefGoogle Scholar
  39. Wu ZG, Jiang W, Nitin M, Bao XQ, Chen SL, Tao ZM (2016) Characterizing diversity based on nutritional and bioactive compositions of yam germplasm (Dioscorea spp.) commonly cultivated in China. J Food Drug Anal 24:367–375CrossRefPubMedGoogle Scholar
  40. Zhang X, Han X, Yin L, Xu Qi Y, Xu Y, Sun H, Lin Y, Liu K, Peng J (2015) Potent effects of dioscin against liver Fibrosis. Nat Sci Rep 5:9713.  https://doi.org/10.1038/srep09713 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • V. Lebot
    • 1
  • R. Malapa
    • 2
  • K. Abraham
    • 3
  • T. Molisalé
    • 2
  • N. Van Kien
    • 4
  • B. Gueye
    • 5
  • J. Waki
    • 6
  1. 1.CIRAD, UMR AGAPPort-VilaVanuatu
  2. 2.VARTCLuganvilleVanuatu
  3. 3.ICAR-CTCRIThiruvananthapuramIndia
  4. 4.PRC, An Khanh, Hoai DucHanoiVietnam
  5. 5.IITAIbadanNigeria
  6. 6.NARILaePapua New Guinea

Personalised recommendations