Genetic Resources and Crop Evolution

, Volume 65, Issue 6, pp 1637–1647 | Cite as

Molecular cytogenetic characterization, leaf anatomy and ultrastructure of the medicinal plant Potentilla alba L.

  • Tatiana E. Samatadze
  • Svyatoslav A. Zoshchuk
  • Anna S. Khomik
  • Alexandra V. AmosovaEmail author
  • Natalya Yu. Svistunova
  • Svetlana N. Suslina
  • Firdaus M. Hazieva
  • Olga Yu. Yurkevich
  • Olga V. Muravenko
Research Article


Potentilla alba L. is a valuable medicinal plant widely used in folk and traditional medicine and particularly promising in complex treatment of thyroid pathology. Natural resources of this species are insufficient due to ever-growing use in contemporary medicine. Comprehensive investigations of different P. alba populations are essential for the successful extension of P. alba plantings. Aiming for a better understanding of karyotype structure, chromosome behaviour in meiosis and developing new diagnostic characters, we performed molecular cytogenetic characterization and leaf structure and ultrastructure analyses of two introduced P. alba samples originating from different habitats. Based on chromosome morphology, distribution of 45S/5S rDNA and DAPI-banding patterns, all chromosomes in the karyotypes were identified and the P. alba chromosomal idiogram was constructed. Our findings confirmed P. alba karyotype stability and also revealed several diagnostic characters of this species: the features of cells of upper and lower leaf epidermis, the presence of calcium oxalate druses and three types of leaf indumentum, essential for evaluation of genetic diversity in different populations, validation of raw materials and further selection progress. The meiotic abnormalities were detected probably related to low pollen activity and indicated the advantages of vegetative propagation in the development of a P. alba plantation system.


FISH Karyotype Leaf anatomy and ultrastructure Meiosis Potentilla alba L. 



This work was supported by the Program of Fundamental Research for State Academies (No. 01201363824) and Russian Foundation of Basic Research (No. 17-29-08-034; 18-016-00167).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests in this work.


  1. Amosova AV, Zemtsova LV, Grushetskaya ZE, Samatadze TE, Mozgova GV, Pilyuk YE, Volovik VT, Melnikova NV, Zelenin AV, Lemesh VA, Muravenko OV (2014) Intraspecific chromosomal and genetic polymorphism in Brassica napus L. detected by cytogenetic and molecular markers. J Genet 93:123–143CrossRefGoogle Scholar
  2. Amosova AV, Bolsheva NL, Samatadze TE, Twardovska MO, Zoshchuk SA, Andreev IO, Badaeva ED, Kunakh VA, Muravenko OV (2015) Molecular cytogenetic analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PLoS ONE 10(9):e0138878. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amosova AV, Zemtsova LV, Yurkevich OY, Zhidkova EN, Książczyk T, Shostak NG, Muravlev AA, Artemyeva AM, Samatadze TE, Zoshchuk SA, Muravenko OV (2017) Genomic changes in generations of synthetic rapeseed-like allopolyploid grown under selection. Euphytica 9:213–217Google Scholar
  4. Asker S (1971) Some viewpoints on Fragaria × Potentilla intergeneric hybridization. Hereditas 67:181–190CrossRefGoogle Scholar
  5. Asker S (1985a) Chromosome studies in Potentilla. Hereditas 102:289–292CrossRefGoogle Scholar
  6. Asker S (1985b) Polymorphism of Potentilla tabentaemontani and related taxa on Gotland. Hereditas 102:39–45CrossRefGoogle Scholar
  7. Asker S, Frost S (1970) The “Potentilla collina problem”—a chemotaxonomic approach. Hereditas 66:49–70CrossRefGoogle Scholar
  8. Baptista-Giacomelli FR, Pagliarini MS, Almeida JL (2000) Meiotic behavior in several Brazilian oat cultivars (Avena sativa L.). Cytologia 65:371–378CrossRefGoogle Scholar
  9. Bellucci M, Roscini C, Mariani A (2003) Cytomixis in pollen mother cells of Medicago sativa L. J Hered 94:512–516CrossRefPubMedGoogle Scholar
  10. Bogacheva NG, Meshkov AI, Konyaeva EA, Alent’eva OG (2016) Pharmocognostic study of the rhizomes and the roots Potentilla alba L. Prob Biol Med Pharm Chem 1:28–32Google Scholar
  11. Bolsheva NL, Dyachenko OV, Samatadze TE, Rachinskaya OA, Zakharchenko TV, Shevchuk NS, Amosova AV, Muravenko OV, Zelenin AV (2016) A karyotype of Mesembryanthemum crystallinum (Aizoaceae) studied by chromosome banding, FISH with rDNA probes and immunofluorescence detection of DNA methylation. Plant Biosyst 160:916–922CrossRefGoogle Scholar
  12. Chitwood DH, Sinha NR (2016) Evolutionary and environmental forces sculpting leaf development. Curr Biol 26(7):297–306CrossRefGoogle Scholar
  13. Delgado L, Gallego F, Rico E (2000) Karyosystematic study of Potentilla L. subgen. Potentilla (Rosaceae) in the Iberian Peninsula. Bot J Linn Soc 132:263–280CrossRefGoogle Scholar
  14. Dickinson TA, Lo E, Talent N (2007) Ploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Syst Evol 266:59–78CrossRefGoogle Scholar
  15. Dobes C, Paule J (2010) A comprehensive chloroplast DNA-based phylogeny of the genus Potentilla (Rosaceae): implications for its geographic origin, phylogeography and generic circumscription. Mol Phylogenet Evol 56:156–175CrossRefPubMedGoogle Scholar
  16. Dobes C, Luckl A, Kausche L, Scheffknecht S, Prohaska D, Sykora C, Paule J (2015) Parallel origins of apomixis in two diverged evolutionary lineages in tribe Potentilleae (Rosaceae). Bot J Linn Soc 177:214–229CrossRefGoogle Scholar
  17. Dolgova AA, Ladygina EY (2003) Manual of practical pharmacognosy. Meditsina, MoscowGoogle Scholar
  18. Dorman DHJ, Shikov AN, Pozharitskaya ON, Hiltunen R (2011) Antioxidant and pro-oxidant evaluation of Potentilla alba L. rhizome extract. Chem Biodivers 8:1344–1356CrossRefGoogle Scholar
  19. Eriksson T, Donoghue MJ, Hibbs MS (1998) Phylogenetic analysis of Potentilla using DNA sequences of nuclear ribosomal internal transcribed spacers (ITS), and implications for the classification of Rosoideae (Rosaceae). Plant Syst Evol 211:155–179CrossRefGoogle Scholar
  20. Eriksson T, Hibbs MS, Yoder AD, Delwiche CF, Donoghue MJ (2003) The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the TRNL/F region of chloroplast DNA. Int J Plant Sci 164:197–211CrossRefGoogle Scholar
  21. Fadaei F, Sheidai M, Asadi M (2010) Cytological study of the genus Arenaria L. (Caryophyllaceae). Caryologia 63:149–156CrossRefGoogle Scholar
  22. Faghir MB, Attar F, Farazmand A, Ertter D, Eriksen B (2010) Leaf indumentum types in Potentilla (Rosaceae) and related genera in Iran. Acta Soc Bot Pol 79:139–145CrossRefGoogle Scholar
  23. Faghir MB, Attar F, Farazmand A, Kazempour Osaloo S (2014) Phylogeny of the genus Potentilla (Rosaceae) in Iran based on nrDNA ITS and cpDNA trnL-F sequences with a focus on leaf and style characters’ evolution. Turk J Bot 38:417–429CrossRefGoogle Scholar
  24. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ghaffari SM (2006) Occurrence of diploid and polyploid microspores in Sorghum bicolor (Poaceae) is the result of cytomixis. Afr J Biotechnol 5:1450–1453Google Scholar
  27. Grant V (1981) Plant speciation. Columbia University Press, New YorkGoogle Scholar
  28. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23(4):1029–1041CrossRefGoogle Scholar
  29. Heywood VH (2007) Flowering plants of the world. Mayflower Books. Elsevier, New YorkGoogle Scholar
  30. Iwatsubo Y, Naruhashi N (1991) Karyomorphological and cytogenetical studies in Potentilla (Rosaceae) I. Karyotypes of nine Japanese species. Cytologia 56:1–10Google Scholar
  31. Jeelani SM, Kumari S, Gupta RC (2012) Meiotic studies in some selected angiosperms from the Kashmir Himalayas. J Syst Evol 50:244–257CrossRefGoogle Scholar
  32. Kaminskiĭ AV, Kiseleva IA, Teplaia EV (2013) Clinical application of Potentilla alba for prevention and treatment of thyroid gland pathologies. Likars’ka Sprava 8:99–108Google Scholar
  33. Kołodziejek J, Gabara B (2007) Characteristics of achenes in Potentilla collina group (Rosaceae). Acta Soc Bot Pol 76(1):35–42CrossRefGoogle Scholar
  34. Kosman VM, Faustova NM, Pozharitskaya ON, Makarov VG (2013) Accumulation of biologically active compounds in underground parts of composition of Potentilla alba L. after various cultivation terms. Russ J Bioorg Chem 2:139–146Google Scholar
  35. Kovalenko PG, Antonjuk VP, Maliuta SS (2004) Secondary metabolites production from transformed cells of Glycyrrhiza glabra and Potentilla alba as producers of radio-protective compounds. Ukr Bioorg Acta 1–2:13–22Google Scholar
  36. Kvacheniuk AN, Kvacheniuk EL (2012) The use of phytotherapy for treatment of thyroid diseases. Likars’ka Sprava 3:99–104Google Scholar
  37. Las Peñas ML, Bernardello G, Kiesling R (2008) Karyotypes and fluorescent chromosome banding in Pyrrhocactus (Cactaceae). Plant Syst Evol 272:211–222CrossRefGoogle Scholar
  38. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  39. Liu B, Chen C, Li X, Qi L, Han S (2006) Karyotype analysis and physical mapping of 45S rDNA in eight species of Sophora, Robinia, and Amorpha. Front Biol China 3:290–294CrossRefGoogle Scholar
  40. Ma L, Sun X, Kong X, Galvan JV, Li X, Yang S, Yang Y, Yang Y, Hu X (2015) Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. J Proteom 112:63–82CrossRefGoogle Scholar
  41. Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423CrossRefPubMedGoogle Scholar
  42. Matkowski A, Świąder K, Ślusarczyk S, Jezierska-Domaradzka A, Oszmiański J (2006) Free radical scavenging activity of extracts obtained from cultivated plants of Potentilla alba L. and Waldsteinia geoides L. Herva Pol 52(4):91–97Google Scholar
  43. Mesicek J, Sojak J (1993) Annotated chromosome numbers of selected Asiatic Potentilla species. Folia Geobot Phytotax 28(4):437–446CrossRefGoogle Scholar
  44. Moraes AP, Filho WS, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chromosome Res 15:115–121CrossRefPubMedGoogle Scholar
  45. Müntzinc A (1958) Heteroploidy and polymorphism in some apomictic species of Potentilla. Hereditas 44:280–329CrossRefGoogle Scholar
  46. Muravenko OV, Zelenin AV (2009) Chromosomal organization of the genomes of small chromosome plants. Russ J Genet 45:1338–1350CrossRefGoogle Scholar
  47. Muravenko OV, Yurkevich OYu, Bolsheva NL, Samatadze TE, Nosova IV, Zelenina DA, Volkov AA, Popov KV, Zelenin AV (2009) Comparison of genomes of eight species of sections Linum and Adenolinum from the genus Linum based on chromosome banding, molecular markers and RAPD analysis. Genetica 135:245–255CrossRefPubMedGoogle Scholar
  48. Nirmala A, Rao PN (1996) Genetics of chromosome numerical mosaism in higher plants. Nucleus 39:151–175Google Scholar
  49. Ossipov VI, Polyakov NA, Sidelnikov AN, Hazieva FM (2017) Proanthocyanidins in the roots and rhizomes of Potentilla alba (Rosaceae). Rastitelnye Resursy 53:114–125Google Scholar
  50. Paule J, Sharbal TF, Dobes C (2011) Apomoctic and sexual lineages of the Potentilla argentea L. group (Rosaceae): cytotype and molecular genetic differentiation. Taxon 60:721–732Google Scholar
  51. Pedersen C, Linde Laursen I (1994) Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res 2:65–71CrossRefPubMedGoogle Scholar
  52. Pinto-Maglio CAF (2006) Cytogenetics of coffee. Braz J Plant Physiol 18:37–44CrossRefGoogle Scholar
  53. Rani S, Kumar S, Jeelani SM, Gupta RC, Kumari S (2012) Additions to the cytologically investigated species of Potentilla L. (Rosaceae) from India. Plant Syst Evol 298:485–497CrossRefGoogle Scholar
  54. Samatadze TE, Zelenin AV, Amosova AV, Popov KV, Suslina SN, Zagumennikova TN, Tsytsylin AN, Bykov VA, Muravenko OV (2012) Comparative cytogenetic study of the forms of Macleaya cordata (Willd.) R. Br. from different localities. Russ J Genet 48:63–69CrossRefGoogle Scholar
  55. Samatadze TE, Amosova AV, Melnikova NV, Suslina SN, Zagumennikova TN, Zelenin AV, Bykov VA, Muravenko OV (2014) Comparative cytogenetic study of the tetraploid Matricaria chamomilla L. and Matricaria inodora L. Biol Bull 2:123–132Google Scholar
  56. Sheidai M, Koobaz P, Zehzad B (2003) Meiotic studies of some Avena L. species and populations. Iran J Sci 14:121–131Google Scholar
  57. Shimono Y, Watanabe M, Hirao AS, Wada N, Kudo G (2009) Morphological and genetic variations of Potentilla matsumurae (Rosaceae) between fellfield and snowbed populations. Am J Bot 96(4):728–737CrossRefPubMedGoogle Scholar
  58. Smyk GK, Krivenko VV (1975) White cinquefoil, an effective agent for treating thyroid gland diseases. Farm Zh 2:58–62Google Scholar
  59. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588CrossRefPubMedGoogle Scholar
  60. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  61. Sybenga J (1996) Recombination and chiasmata: few but in triguing discrepancies. Genome 39:473–484CrossRefPubMedGoogle Scholar
  62. Tomasz I, Kołodziejek J (2008) Chromosome numbers of Potentilla subsect. Collinae (Rosaceae) from Poland. Caryologia 61:170–175CrossRefGoogle Scholar
  63. Turchaninova LI (2014) Experience of using phytopreparation Alba (root extract of the Potentilla alba) in complex treatment of thyroid pathology in children and adolescents. Likars’ka sprava 3:125–129Google Scholar
  64. Wolf T (1908) Monographie der Gattung Potentilla L. Biblioth Bot 71:1–714Google Scholar
  65. Yurkevich OYu, Naumenko-Svetlova AA, Bolsheva NL, Samatadze TE, Rachinskaya OA, Kudryavtseva AV, Zelenina DA, Volkov AA, Zelenin AV, Muravenko OV (2013) Investigation of genome polymorphism and seed coat anatomy of species of section Adenolinum from the genus Linum. Genet Resour Crop Evol 60:661–676CrossRefGoogle Scholar
  66. Yuzepchuk SV (1941) Genus Potentilla. In: Shishkin BK (ed) Flora SSSR (Flora of the Soviet Union), vol 10. Leningrad, Moscow, pp 78–223Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Tatiana E. Samatadze
    • 1
    • 2
    • 3
  • Svyatoslav A. Zoshchuk
    • 1
  • Anna S. Khomik
    • 2
  • Alexandra V. Amosova
    • 1
    Email author
  • Natalya Yu. Svistunova
    • 3
  • Svetlana N. Suslina
    • 2
  • Firdaus M. Hazieva
    • 3
  • Olga Yu. Yurkevich
    • 1
  • Olga V. Muravenko
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussian Federation
  2. 2.People’s Friendship University of Russia (RUDN University)MoscowRussian Federation
  3. 3.All-Russian Institute of Medicinal and Aromatic PlantsFederal Agency for Scientific OrganizationsMoscowRussian Federation

Personalised recommendations