Genetic diversity of dihydrochalcone content in Malus germplasm
- 41 Downloads
Abstract
Dihydrochalcones, beneficial phenolic compounds, are abundant in Malus Mill. species, particularly in vegetative tissues and seeds. Phloridzin (phloretin 2′-O-glucoside) is the primary dihydrochalcone in most Malus species including cultivated apple, Malus × domestica Borkh. A few species contain sieboldin (3-hydroxyphloretin 4′-O-glucoside) or trilobatin (phloretin 4′-O-glucoside) in place of phloridzin, and interspecific hybrids may contain combinations of phloridzin, sieboldin, and trilobatin. Proposed health benefits of phloridzin include anti-cancer, antioxidant, and anti-diabetic properties, suggesting the potential to breed apples for nutritional improvement. Sieboldin and trilobatin are being investigated for nutritional value and unique chemical properties. Although some of the biosynthetic steps of dihydrochalcones are known, little is known about the extent of variation within Malus germplasm. This research explores the genetic diversity of leaf dihydrochalcone content and composition in Malus germplasm. Dihydrochalcone content was measured using high performance liquid chromatography (HPLC) from leaf samples of 377 accessions, representing 50 species and interspecific hybrids from the USDA-Agricultural Research Service (ARS) National Plant Germplasm System Malus collection. Within the accessions sampled, 284 accessions contained phloridzin as the primary dihydrochalcone, one had only trilobatin, two had phloridzin and trilobatin, 36 had sieboldin and trilobatin, and 54 had all three. Leaf phloridzin content ranged from 17.3 to 113.7 mg/g with a heritability of 0.76 across all accessions. Beyond the potential of dihydrochalcones for breeding purposes, dihydrochalcone composition may be indicative of hybridization or species misclassification.
Keywords
Apple Liquid chromatography Dihydrochalcones Germplasm Malus PhloridzinNotes
Acknowledgements
This project was funded by the USDA-ARS Plant Genetics Resources Unit, Geneva NY. BG was supported through the USDA Pathways Program. We thank Jie Arro, Lailiang Cheng, Michael Gore, Thomas Chao, Gennaro Fazio, and Heidi Schwaninger for their input and technical assistance throughout the project; the PGRU Clonal group for field and database assistance; and the Arnold Arboretum of Harvard University for providing budwood of M. trilobata 127-2009.
Compliance with ethical standards
Conflict of interest
Authors declare no conflict of interest.
References
- Anastasiadi M, Mohareb F, Redfern SP, Berry M, Simmonds MSJ, Terry LA (2017) Biochemical profile of heritage and modern apple cultivars and application of machine learning methods to predict usage, age, and harvest season. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b00500 PubMedGoogle Scholar
- Bao L, Li K, Liu Z, Han M, Zhang D (2016) Characterization of the complete chloroplast genome of the Chinese crabapple Malus prunifolia (Rosales: Rosaceae: Maloideae). Conserv Genet Resour 8:227–229. https://doi.org/10.1007/s12686-016-0540-0 CrossRefGoogle Scholar
- Brown S (2012) Apple. In: Badenes ML, Byrne DH (eds) Fruit breeding. Springer, New York, pp 329–367CrossRefGoogle Scholar
- Cerny BA, Kaiser HF (1977) A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivar Behav Res 12:43–47. https://doi.org/10.1207/s15327906mbr1201_3 CrossRefGoogle Scholar
- Challice JS (1974) Rosaceae chemotaxonomy and the origins of the Pomoideae. Bot J Linn Soc 69:239–259. https://doi.org/10.1111/j.1095-8339.1974.tb01629.x CrossRefGoogle Scholar
- Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, Cam BL et al (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e1002703. https://doi.org/10.1371/journal.pgen.1002703 CrossRefPubMedPubMedCentralGoogle Scholar
- Cornille A, Gladieux P, Giraud T (2013) Crop-to-wild gene flow and spatial genetic structure in the closest wild relatives of the cultivated apple. Evol Appl 6:737–748. https://doi.org/10.1111/eva.12059 CrossRefPubMedPubMedCentralGoogle Scholar
- Cornille A, Feurtey A, Gelin U, Ropars J, Misvanderbrugge K, Gladieux P, Giraud T (2015) Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evol Appl 8:373–384. https://doi.org/10.1111/eva.12250 CrossRefPubMedPubMedCentralGoogle Scholar
- Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330 CrossRefPubMedPubMedCentralGoogle Scholar
- Dare A, Hellens R (2013) RNA interference silencing of CHS greatly alters the growth pattern of apple (Malus x domestica). Plant Signal Behav 8:e25033. https://doi.org/10.4161/psb.25033 CrossRefPubMedPubMedCentralGoogle Scholar
- Dare AP, Tomes S, Jones M, McGhie TK, Stevenson DE, Johnson RA, Greenwood DR, Hellens RP (2013) Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus × domestica). Plant J 74:398–410. https://doi.org/10.1111/tpj.12140 CrossRefPubMedGoogle Scholar
- Dare AP, Yauk Y-K, Tomes S, McGhie TK, Rebstock RS, Cooney JM, Atkinson RG (2017) Silencing a phloretin-specific glycosyltransferase perturbs both general phenylpropanoid biosynthesis and plant development. Plant J Cell Mol Biol 91:237–250. https://doi.org/10.1111/tpj.13559 CrossRefGoogle Scholar
- De Paepe D, Valkenborg D, Noten B, Servaes K, Diels L, Loose MD, Van Droogenbroeck B, Voorspoels S (2015) Variability of the phenolic profiles in the fruits from old, recent and new apple cultivars cultivated in Belgium. Metabolomics 11:739–752. https://doi.org/10.1007/s11306-014-0730-2 CrossRefGoogle Scholar
- Dong H-Q, Li M, Zhu F, Liu F-L, Huang J-B (2012) Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd. against α-glucosidase and α-amylase linked to type 2 diabetes. Food Chem 130:261–266. https://doi.org/10.1016/j.foodchem.2011.07.030 CrossRefGoogle Scholar
- Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M et al (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun. https://doi.org/10.1038/s41467-017-00336-7 Google Scholar
- Dugé de Bernonville T, Guyot S, Paulin J-P, Gaucher M, Loufrani L, Henrion D et al (2010) Dihydrochalcones: implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry 71:443–452. https://doi.org/10.1016/j.phytochem.2009.11.004 CrossRefPubMedGoogle Scholar
- Dugé de Bernonville T, Gaucher M, Guyot S, Durel C-E, Dat JF, Brisset M-N (2011) The constitutive phenolic composition of two Malus × domestica genotypes is not responsible for their contrasted susceptibilities to fire blight. Environ Exp Bot 74:65–73. https://doi.org/10.1016/j.envexpbot.2011.04.019 CrossRefGoogle Scholar
- Eichenberger M, Lehka BJ, Folly C, Fischer D, Martens S, Simón E, Naesby M (2017) Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metab Eng 39:80–89. https://doi.org/10.1016/j.ymben.2016.10.019 CrossRefPubMedPubMedCentralGoogle Scholar
- Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. https://doi.org/10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
- Fromm M, Bayha S, Carle R, Kammerer DR (2012) Characterization and quantitation of low and high molecular weight phenolic compounds in apple seeds. J Agric Food Chem 60:1232–1242. https://doi.org/10.1021/jf204623d CrossRefPubMedGoogle Scholar
- Fu M, Li C, Ma F (2013) Physiological responses and tolerance to NaCl stress in different biotypes of Malus prunifolia. Euphytica 189:101–109. https://doi.org/10.1007/s10681-012-0721-1 CrossRefGoogle Scholar
- Gaucher M, Dugé de Bernonville T, Guyot S, Dat JF, Brisset M-N (2013a) Same ammo, different weapons: enzymatic extracts from two apple genotypes with contrasted susceptibilities to fire blight (Erwinia amylovora) differentially convert phloridzin and phloretin in vitro. Plant Physiol Biochem 72:178–189. https://doi.org/10.1016/j.plaphy.2013.03.012 CrossRefPubMedGoogle Scholar
- Gaucher M, Dugé de Bernonville T, Lohou D, Guyot S, Guillemette T, Brisset M-N, Dat JF (2013b) Histolocalization and physico-chemical characterization of dihydrochalcones: insight into the role of apple major flavonoids. Phytochemistry 90:78–89. https://doi.org/10.1016/j.phytochem.2013.02.009 CrossRefPubMedGoogle Scholar
- Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842. https://doi.org/10.1007/s10722-008-9404-0 CrossRefGoogle Scholar
- Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:e90346. https://doi.org/10.1371/journal.pone.0090346 CrossRefPubMedPubMedCentralGoogle Scholar
- Gosch C, Halbwirth H, Kuhn J, Miosic S, Stich K (2009) Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Sci 176:223–231. https://doi.org/10.1016/j.plantsci.2008.10.011 CrossRefGoogle Scholar
- Gosch C, Halbwirth H, Schneider B, Hölscher D, Stich K (2010a) Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 2′-O-glucoside (phloridzin). Plant Sci 178:299–306. https://doi.org/10.1016/j.plantsci.2009.12.009 CrossRefGoogle Scholar
- Gosch C, Halbwirth H, Stich K (2010b) Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochem 71:838–843. https://doi.org/10.1016/j.phytochem.2010.03.003 CrossRefGoogle Scholar
- Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE et al (2012) Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab 14:83–90. https://doi.org/10.1111/j.1463-1326.2011.01517.x CrossRefPubMedGoogle Scholar
- Gross BL, Henk AD, Forsline PL, Richards CM, Volk GM (2012) Identification of interspecific hybrids among domesticated apple and its wild relatives. Tree Genet Genomes 8:1223–1235. https://doi.org/10.1007/s11295-012-0509-4 CrossRefGoogle Scholar
- Gross BL, Volk GM, Richards CM, Reeves PA, Henk AD, Forsline PL, Szewc-McFadden A, Fazio G, Chao CT (2013) Diversity captured in the USDA-ARS National Plant Germplasm System apple core collection. J Am Soc Hortic Sci 138:375–381Google Scholar
- Guo S, Guan L, Cao Y, Li C, Chen J, Li J, Liu G, Li S, Wu B (2016) Diversity of polyphenols in the peel of apple (Malus sp.) germplasm from different countries of origin. Int J Food Sci Technol 51:222–230. https://doi.org/10.1111/ijfs.12994 CrossRefGoogle Scholar
- Höfer M, Ali M, Sellmann J, Peil A (2014) Phenotypic evaluation and characterization of a collection of Malus species. Genet Resour Crop Evol 61:943–964. https://doi.org/10.1007/s10722-014-0088-3 CrossRefGoogle Scholar
- Hokanson SC, Lamboy WF, Szewc-McFadden AK, McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118:281–294. https://doi.org/10.1023/A:1017591202215 CrossRefGoogle Scholar
- Hunter LD (1975) Phloridzin and apple scab. Phytochemistry 14:1519–1522. https://doi.org/10.1016/0031-9422(75)85343-X CrossRefGoogle Scholar
- Hutabarat OS, Flachowsky H, Regos I, Miosic S, Kaufmann C, Faramarzi S et al (2016) Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. Planta 243:1213–1224. https://doi.org/10.1007/s00425-016-2475-9 CrossRefPubMedPubMedCentralGoogle Scholar
- Jakobek L, Barron AR (2016) Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. J Food Compos Anal 45:9–15. https://doi.org/10.1016/j.jfca.2015.09.007 CrossRefGoogle Scholar
- Khan MA, Olsen KM, Sovero V, Kushad MM, Korban SS (2014a) Fruit quality traits have played critical roles in domestication of the apple. Plant Genome 7:1–18. https://doi.org/10.3835/plantgenome2014.04.0018 CrossRefGoogle Scholar
- Khan SA, Tikunov Y, Chibon P-Y, Maliepaard C, Beekwilder J, Jacobsen E, Schouten HJ (2014b) Metabolic diversity in apple germplasm. Plant Breed 133:281–290. https://doi.org/10.1111/pbr.12134 CrossRefGoogle Scholar
- Kviklys D, Liaudanskas M, Janulis V, Viškelis P, Rubinskienė M, Lanauskas J, Uselis N (2014) Rootstock genotype determines phenol content in apple fruits. Plant Soil Environ 60:234–240CrossRefGoogle Scholar
- Le Roux PM, Flachowsky H, Hanke M-V, Gessler C, Patocchi A (2012) Use of a transgenic early flowering approach in apple (Malus × domestica Borkh.) to introgress fire blight resistance from cultivar Evereste. Mol Breed 30:857–874. https://doi.org/10.1007/s11032-011-9669-4 CrossRefGoogle Scholar
- Lee T-H, Guo H, Wang X, Kim C, Paterson AH (2014) SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genom 15:162. https://doi.org/10.1186/1471-2164-15-162 CrossRefGoogle Scholar
- Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinforma Oxf Engl 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324 CrossRefGoogle Scholar
- Maecheler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2016) Cluster: Cluster analysis basics and extensions. R package version 2.0.5Google Scholar
- Migicovsky Z, Gardner KM, Money D, Sawler J, Bloom JS, Moffett P et al (2016) Genome to phenome mapping in apple using historical data. Plant Genome. https://doi.org/10.3835/plantgenome2015.11.0113 PubMedGoogle Scholar
- Moriya S, Iwanami H, Haji T, Okada K, Yamada M, Yamamoto T, Abe K (2015) Identification and genetic characterization of a quantitative trait locus for adventitious rooting from apple hardwood cuttings. Tree Genet Genomes 11:59. https://doi.org/10.1007/s11295-015-0883-9 CrossRefGoogle Scholar
- Nikiforova SV, Cavalieri D, Velasco R, Goremykin V (2013) Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Mol Biol Evol 30:1751–1760. https://doi.org/10.1093/molbev/mst092 CrossRefPubMedGoogle Scholar
- Noiton DAM, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci 121:773–782Google Scholar
- Polat D, Yildirim F (2016) Variation of phenolic content in leaves of 14 apple rootstocks with varying growth vigour. Ziraat Fakültesi Derg - Süleyman Demirel Üniversitesi 11:63–70Google Scholar
- Potts SM, Han Y, Khan MA, Kushad MM, Rayburn AL, Korban SS (2012) Genetic diversity and characterization of a core collection of Malus germplasm using simple sequence repeats (SSRs). Plant Mol Biol Report 30:827–837. https://doi.org/10.1007/s11105-011-0399-x CrossRefGoogle Scholar
- R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
- Robinson J, Harris S, Juniper B (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst Evol 226:35–58CrossRefGoogle Scholar
- Rosenwasser RF, Sultan S, Sutton D, Choksi R, Epstein BJ (2013) SGLT-2 inhibitors and their potential in the treatment of diabetes. Diabetes Metab Syndr Obes 6:453–467PubMedPubMedCentralGoogle Scholar
- Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. https://doi.org/10.1093/bioinformatics/btq706 CrossRefPubMedGoogle Scholar
- Tang J, Tang L, Tan S, Zhou Z (2015) The study of variation of phloridzin content in six wild Malus species. J Food Nutr Res 3:146–151CrossRefGoogle Scholar
- USDA (2014) National genetic resources program. Germplasm resources information network (GRIN). USDA, ARS Natl. Germplasm Resources Laboratory, Beltsville, MD. http://www.ars-grin.gov/npgs/index.html. Accessed 5 May 2017
- Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. https://doi.org/10.1038/ng.654 CrossRefPubMedGoogle Scholar
- Volk GM, Chao CT, Norelli J, Brown SK, Fazio G, Peace C, McFerson J, Zhong G-Y, Bretting P (2015a) The vulnerability of US apple (Malus) genetic resources. Genet Resour Crop Evol 62:765–794. https://doi.org/10.1007/s10722-014-0194-2 CrossRefGoogle Scholar
- Volk GM, Henk AD, Baldo A, Fazio G, Chao CT, Richards CM (2015b) Chloroplast heterogeneity and historical admixture within the genus Malus. Am J Bot 102:1198–1208. https://doi.org/10.3732/ajb.1500095 CrossRefPubMedGoogle Scholar
- Volz RK, McGhie TK (2011) Genetic variability in apple fruit polyphenol composition in Malus × domestica and Malus sieversii germplasm grown in New Zealand. J Agric Food Chem 59:11509–11521. https://doi.org/10.1021/jf202680h CrossRefPubMedGoogle Scholar
- Wagner I, Maurer WD, Lemmen P, Schmitt HP, Wagner M, Binder M, Patzak P (2014) Hybridization and genetic diversity in wild apple (Malus sylvestris (L.) Mill.) from various regions in Germany and from Luxembourg. Silvae Genet 63:81–93. https://doi.org/10.1515/sg-2014-0012 Google Scholar
- Wan Y, Li D, Zhao Z, Mei L, Han M, Schwaninger H, Fazio G (2011) The distribution of wild apple germplasm in Northwest China and its potential application for apple rootstock breeding. Ix Int Symp Integrating Canopy Rootstock Environ Physiol Orchard Syst 903:123–141. https://doi.org/10.17660/ActaHortic.2011.903.12 Google Scholar
- Williams AH (1961) Dihydrochalcones of Malus species. J Chem Soc 155:4133–4136. https://doi.org/10.1039/JR9610004133 CrossRefGoogle Scholar
- Williams AH (1966) Dihydrochalcones. In: Swain T (ed) Comparative phytochemistry. Academic Press, New York, pp 291–307Google Scholar
- Williams AH (1982) Chemical evidence from the flavonoids relevant to the classification of Malus species. Bot J Linn Soc 84:31–39. https://doi.org/10.1111/j.1095-8339.1982.tb00358.x CrossRefGoogle Scholar
- Xiao Z, Zhang Y, Chen X, Wang Y, Chen W, Xu Q, Li P, Ma F (2017) Extraction, identification, and antioxidant and anticancer tests of seven dihydrochalcones from Malus ‘Red Splendor’ fruit. Food Chem 231:324–331. https://doi.org/10.1016/j.foodchem.2017.03.111 CrossRefPubMedGoogle Scholar
- Yahyaa M, Davidovich-Rikanati R, Eyal Y, Sheachter A, Marzouk S, Lewinsohn E, Ibdah M (2016) Identification and characterization of UDP-glucose: phloretin 4′-O-glycosyltransferase from Malus x domestica Borkh. Phytochem 130:47–55. https://doi.org/10.1016/j.phytochem.2016.06.004 CrossRefGoogle Scholar
- Zhang T-J, Liang J-Q, Wei X-Y, Wang P-X, Xu Y, Pen S, Fan M-T (2017) Development of an enzymatic synthesis approach to produce phloridzin using Malus x domestica glycosyltransferase in engineered Pichia pastoris GS115. Process Biochem. https://doi.org/10.1016/j.procbio.2017.05.009 Google Scholar
- Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328. https://doi.org/10.1093/bioinformatics/bts606 CrossRefPubMedPubMedCentralGoogle Scholar
- Zhou K, Hu L, Li P et al (2017) Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Sci 265:131–145CrossRefPubMedGoogle Scholar
- Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720 CrossRefPubMedGoogle Scholar