Genetic Resources and Crop Evolution

, Volume 65, Issue 4, pp 1237–1253 | Cite as

National inventory and prioritization of crop wild relatives in Spain

  • María Luisa Rubio TesoEmail author
  • Elena Torres Lamas
  • Mauricio Parra-Quijano
  • Lucía de la Rosa
  • Juan Fajardo
  • José M. Iriondo
Research Article


Crop wild relatives (CWR) have recently received significant attention due to their value as plant genetic resources and their contribution to world food security. We present a prioritized checklist of CWR in Spain in which the criteria of crossability with crops of economic importance, endemicity and threat status have been taken into account. First, we selected a list of genera corresponding to the most relevant crops for Spain and at the international level. These crops were classified into use categories (Food, Forage & Fodder, Ornamental, and Industrial & Other uses) depending on their main use. The wild plant species native to Spain belonging to these genera were then listed. After evaluation by national experts in plant breeding, the resulting checklist contained 929 species. Further selection based on crossability, endemicity and threat status led to the generation of the Prioritized Spanish Checklist of crop wild relatives containing 578 species. Thirty-two percent of these species belong to the Forage & Fodder use category, 28% to the Ornamental category, 24% to the Food category and 16% to the Industrial & Other uses category. Thirty-five percent of the prioritized species are endemic to Spain, and over one-fourth are classified under some category of threat according to the International Union for Conservation of Nature. Endemicity and threat status rates in the Prioritized Spanish Checklist of CWR were higher than those found in the prioritized CWR inventories of other countries. A ex situ assessment reporting number of accessions showed that 70% of the prioritized Spanish CWR have accessions preserved in genebanks.


Food Security Plant Diversity Conservation Spanish Plant Genetic Resources Checklist Threatened Plants 



We thank the European PGR Secure project (Novel characterization of crop wild relative and landrace resources as a basis for improved crop breeding. European Commission Framework Programme 7 collaborative project; Grant Agreement No. 266394) which supported this work and its participants which provided helpful and valuable comments on our work during the project implementation. We appreciate the advice provided by the following experts in plant breeding: Dr. Mallor, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Dr. Díez, Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Dr. Rubiales, Instituto de Agricultura Sostenible, Centro Superior de Investigaciones Científicas, Dr. Oliveira, Universidad de Oviedo, and Dr. Ordás and Dr. Cartea, Misión Biológica de Galicia. We also thank the following germplasm banks and data repositories for providing information on ex situ holdings: Nat-Museu de Ciencies Naturals de Barcelona, Banco de Germoplasma Real Jardín Botánico Juan Carlos I, Banco de Semillas de Macaronesia—Jardín Botánico “Viera y Clavijo”, Banco de Germoplasma Vegetal Andaluz, Jardín Botánico de Córdoba, Banco de Semillas de la Universidad de Valencia, Banco de Germoplasma del Jardín Botánico Atlántico, Banco de Germoplasma César Gómez Campo, Universidad Politécnica de Madrid, Banco de Germoplasma, Real Jardín Botánico de Madrid, Banco de Germoplasma del Jardín Botánico de Sóller, Jardí Botànic Marimurtra, Banco de Germoplasma de Universidad de Castilla-La Mancha, National Germplasm Resources Laboratory, United States Department of Agriculture, EURISCO, and REDBAG network. Finally, we also thank Lori De Hond for her linguistic assistance.

Compliance with ethical standards

Conflict of interest

There are no potential conflicts of interest

Ethical approval

The corresponding author María Luisa Rubio Teso states that: Authors comply with ethical responsibilities requested by the journal.

Human and animal rights statement

Research does not involve human participants or animals and all authors have contributed with the developed work and they have been informed and agreed to the submission of this article to the journal (National Inventory and Prioritization of Crop Wild Relatives in Spain).

Supplementary material

10722_2018_610_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 19 kb)
10722_2018_610_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 20 kb)
10722_2018_610_MOESM3_ESM.docx (28 kb)
Supplementary material 3 (DOCX 28 kb)
10722_2018_610_MOESM4_ESM.xlsx (41 kb)
Supplementary material 4 (XLSX 42 kb)
10722_2018_610_MOESM5_ESM.docx (20 kb)
Supplementary material 5 (DOCX 20 kb)
10722_2018_610_MOESM6_ESM.docx (23 kb)
Supplementary material 6 (DOCX 24 kb)


  1. Acebes Ginovés JR, León Arencibia MC, Rodríguez Navarro ML, del Arco Aguilar M, García Gallo A, Pérez de Paz PL, Rodríguez Delgado O, Martín Osorio VE, Wildpret de la Torre W (2010) Spermatophyta. In: Arechavaleta M, Rodríguez S, Zurita N, García A (eds) Lista de especies silvestres de Canarias. Hongos, plantas y animales terrestres 2009. Gobierno de Canarias: Servicio de Biodiversidad, Dirección General del Medio Natural, Consejería de Medio Ambiente y Ordenación Territorial del Gobierno de Canarias, Tenerife, Spain, pp 122–172Google Scholar
  2. Aedo C, Medina L, Fernández-Albert M (2013) Species richness and endemicity in the Spanish vascular flora. Nord J Bot 31:478–488. CrossRefGoogle Scholar
  3. AEMET (2017) Agencia de Estatal de Meteorología. Informe climático del año 2016. Accessed 30 April 2017
  4. Anthos (2017) Sistema de información de las plantas de España. Real Jardín Botánico, CSIC- Fundación Biodiversidad. Accessed 1 May 2017
  5. Arora RK, Nayar ER (1984) Wild relatives of crop plants in India. New Delhi, IndiaGoogle Scholar
  6. Bacchetta G, Bueno Sánchez A, Fenu G et al (eds) (2008) Conservación ex situ de plantas silvestres. Principado de Asturias/La CaixaGoogle Scholar
  7. Barazani O, Perevolotsky A, Hadas R (2008) A problem of the rich: prioritizing local plant genetic resources for ex situ conservation in Israel. Biol Conserv 141:596–600. CrossRefGoogle Scholar
  8. Berlingeri C, Crespo MB (2012) Inventory of related wild species of priority crops in Venezuela. Genet Resour Crop Evol 59:655–681. CrossRefGoogle Scholar
  9. Bilz M, Kell SP, Maxted N, Lansdown RV (2011) European Red List of Vascular Plants. Publications Office of the European Union, LuxembourgGoogle Scholar
  10. Bjørn GK, Kristiansen K, Jacobsen LH (2011) Bevaring af plantegenetiske ressourcer I de vilde slægtninge til jordbrugets afgrøder. Accessed 15 July 2017
  11. B.O.E—Boletín Oficial del Estado número 46, de 23 de Febrero de 2011. Referencia BOE-A-2011-3582. Real decreto 139/2011, de 4 de Febrero, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas. Ministerio de Medio Ambiente, Medio Rural y Marino. Accessed 16 July 2017
  12. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11. CrossRefPubMedGoogle Scholar
  13. Brown AHD, Briggs JD (1991) Sampling strategies for genetic variation in ex situ collections of endangered plant species. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 99–199Google Scholar
  14. Brown AHD, Marshall DR (1995) A basic sampling strategy: theory and practice. In: Guarino L, Ramanantha RV, Reid R (eds) Collecting plant genetic diversity: technical guidelines. CAB International, Wallingford, pp 75–91Google Scholar
  15. Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14(4):1070–1085. CrossRefPubMedGoogle Scholar
  16. Camadro E (2012) Relevance of the genetic structure of natural populations, and sampling and classification approaches for conservation and use of wild crop relatives: potato as an example. Botany 90:1065–1072CrossRefGoogle Scholar
  17. Campos G, Gisbert C, Pérez-de-Castro A, Díez M (2017) Obtaining advanced generations from Solanum peruvianum PI 126944 in the genetic background of S. lycopersicum by immature seed culture. Euphytica 213:63CrossRefGoogle Scholar
  18. Caro M, Verlaan MG, Julián O et al (2015) Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm. Mol Breed 35:132. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Castroviejo S (coord. gen.) (1986–2012) Flora Iberica 1–8, 10–15, 17, 18, 21. Real Jardín Botánico, CSIC, MadridGoogle Scholar
  20. Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change 4(4):287–291. CrossRefGoogle Scholar
  21. Chester C (2005) From conservation diplomacy to transborder landscapes: the protection of biodiversity across North America’s borders. George Wright Forum 22:27–34Google Scholar
  22. Community Plant Variety Office (2011) Annual report 2010. Publications Office of the European Union, LuxembourgGoogle Scholar
  23. Corinto GL (2014) Nikolai Vavilov’s centers of origin of cultivated plants with a view to conserving agricultural biodiversity. Hum Evol 29:1–17Google Scholar
  24. De Andrés MT, Benito A, Pérez-Rivera G, Ocete R, López MA, Gaforio L, Muñoz G, Cabello F, Martínez Zapater JM, Arroyo-García R (2012) Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol Ecol 21:800–816. CrossRefPubMedGoogle Scholar
  25. De la Rosa L, Aguiarino E, Mallor C, Rubio Teso ML, Parra-Quijano M, Torres E, Iriondo JM (2013) Prioritized crop wild relatives in Spain: status on the National Inventory of Plant Genetic Resources for Agriculture and Food. Crop Wild Relat 23–26Google Scholar
  26. Dempewolf H, Eastwood RJ, Guarino L et al (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol Sustain Food Syst 38:369–377. CrossRefGoogle Scholar
  27. EURISCO (2017) European search catalogue for plant genetic resources. Accessed 28 Nov 2017
  28. FAO (2010) Food and Agriculture Organization of the United Nations. The Second Report on the State of the World’s Plant Genetic Resources for Food and AgricultureGoogle Scholar
  29. FAO (2011) Food and Agriculture Organization of the United Nations. Second Global Plan of Action for Plant Genetic Resources for Food and AgricultureGoogle Scholar
  30. Fernández Martínez J, Melero Vara J, Muñoz-Ruz J, Ruso J, Domínguez J (2000) Selection of wild and cultivated sunflower for resistance to a new broomrape race that overcomes resistance of the Or5 gene. Crop Sci 40(2):550–555. CrossRefGoogle Scholar
  31. Fielder H, Brotherton P, Hosking J, Hopkins JJ, Ford-Lloyd B, Maxted N (2015a) Enhancing the conservation of crop wild relatives in England. PLoS ONE 10:e0130804. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fielder H, Smith C, Ford-Lloyd B, Maxted N (2015b) Enhancing the conservation of crop wild relatives in Scotland. J Nat Conserv 29:51–61. CrossRefGoogle Scholar
  33. Fitzgerald H (2013) The National Crop Wild Relative Strategy Report for Finland. Accessed 01 Jan 2018
  34. FNA—Flora of North America Editorial Committee (eds) (1993+) Flora of North America and North of Mexico, 20+ vols. New York and OxfordGoogle Scholar
  35. Ford-Lloyd BV, Schmidt M, Armstrong SJ, Barazani O, Engels J, Hadas R, Hammer K, Kell SP, Kang D, Khoshbakht K, Li Y, Long C, Lu B, Ma K, Nguyen VT, Qiu L, Ge S, Wei W, Zhang Z, Maxted N (2011) Crop wild relatives—undervalued, underutilized and under threat? Bioscience 61:559–565. CrossRefGoogle Scholar
  36. García RM, Parra-Quijano M, Fajardo J, de la Rosa L (2015) Use of Eco-geographic tools in planning an optimized collection of wild relatives of cultivated legumes and cereals in Spain. In: de Ron AM (ed) EUCARPIA-PCWG international symposium on protein crops. Pontevedra, Spain, p 118Google Scholar
  37. García RM, Parra-Quijano M, Iriondo JM (2017) A multispecies collecting strategy for crop wild relatives based on complementary areas with a high density of ecogeographical gaps. Crop Sci 57(3):1059–1069. CrossRefGoogle Scholar
  38. (27th November 2011–27th September 2013) GBIF Occurrence Download. 500 Datasets dowloaded. Accessed 1 May 2017
  39. GENESYS (2017) GENESYS Global Portal on Plant Genetic Resources. Data downloaded for 136 species from the following institutions: Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (, International Livestock Research Institute (, Millennium Seed Bank Project, Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place (, International Crop Research Institute for the Semi-Arid Tropics (, International Centre for Agricultural Research in Dry Areas (, Northeast Regional Plant Introduction Station, Plant Genetic Resources Unit, USDA-ARS, New York State Agricultural Experiment Station, Cornell University (, Plant Genetic Resources Conservation Unit, Southern Regional Plant Introduction Station, University of Georgia, USDA-ARS (, North Central Regional Plant Introduction Station, USDA-ARS, NCRPIS (, Western Regional Plant Introduction Station, USDA-ARS, Washington State University (, National Small Grains Germplasm Research Facility, USDA-ARS (, Wheat Genetics Resource Center ( and Ornamental Plant Germplasm Center, Ohio State University ( All intellectual property rights (including copyright) in the Data are owned and retained by the said institutions. Data accessed through GENESYS Global Portal on Plant Genetic Resources., Accessed 31 Dec 2017
  40. Gomez-Campo U, Aguinagalde I, Ceresuela JL, Lázaro A, Martínez-Laborde JB, Parra-Quijano M, Simonetti E, Torres E, Tortosa ME (2005) An exploration of wild Brassica oleracea L. germplasm in northern Spain. Genet Resour Crop Evol 52:7–13CrossRefGoogle Scholar
  41. GRIN-USDA (2017) Genetic resources information network of United States Department of Agriculture, Agricultural Research Service. Accessed 30 April 2017
  42. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13. CrossRefGoogle Scholar
  43. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:506–517CrossRefGoogle Scholar
  44. Heywood V (2011) Conservation strategies for species/populations occurring outside protected areas. In: Hunter D, Heywood V (eds) Crop wild relatives. A manual of in situ conservation. Earthscan, London, Washington-DC, pp 253–294Google Scholar
  45. Heywood VH, Zohary D (1995) A catalogue of the wild relatives of cultivated plants native to Europe. Flora Mediterr 5:375–415Google Scholar
  46. Heywood V, Casas A, Ford-Lloyd B, Kell S, Maxted N (2007) Conservation and sustainable use of crop wild relatives. Agric Ecosyst Environ 121:245–255. CrossRefGoogle Scholar
  47. Honnay O, Jacquemyn H, Aerts R (2012) Crop wild relatives: more common ground for breeders and ecologists. Front Ecol Environ 10(3):121. CrossRefGoogle Scholar
  48. Howden SM, Soussana J-F, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. Proc Natl Acad Sci USA 104(50):19691–19696. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hunter D, Heywood V (2011) Crop wild relatives. A manual of in situ conservation. Earthscan, LondonGoogle Scholar
  50. Idohou R, Assogbadjo AE, Fandohan B, Gouwakinnou GN, Glele Kakai RL, Sinsin B, Maxted N (2013) National inventory and prioritization of crop wild relatives: case study for Benin. Genet Resour Crop Evol 60(4):1337–1352. CrossRefGoogle Scholar
  51. Iriondo JM, Fielder H, Fitzgerald H, Kell SP, Labokas J, Negri V, Phillips J, Rubio Teso ML, Sensen S, Taylor N, Maxted N (2016) National strategies for the conservation of crop wild relatives. In: Maxted N, Dulloo ME, Ford-Lloyd BV (eds) Enhancing crop genepool use. Capturing wild relative and landrace diversity for crop improvement. CAB International, Wallingford, pp 161–171CrossRefGoogle Scholar
  52. Kell SP, Knüpffer H, Jury SL, Maxted N, Ford-Lloyd BV (2005) Catalogue of crop wild relatives for Europe and the Mediterranean. University of Birmingham, Birmingham, UK. Available online via the Crop Wild Relative Information System (CWRIS— and on CD-ROM
  53. Kell SP, Knüpffer H, Jury SL, Ford-Lloyd BV, Maxted N (2008) Crops and wild relatives of the Euro-Mediterranean region: making and using a conservation catalogue. Crop wild relative conservation and use. CAB International, Wallingford, pp 69–109Google Scholar
  54. Kell SP, Maxted N, Bilz M (2012) European crop wild relative threat assessment: knowledge gained and lessons learnt. In: Maxted N, Dulloo ME, Ford-Lloyd BV et al (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford, pp 218–242CrossRefGoogle Scholar
  55. Kell S, Qin H, Chen B, Ford-Lloyd B, Wei W, Kang D, Maxted N (2014) China’s crop wild relatives: diversity for agriculture and food security. Agric Ecosyst Environ 209:138–154. CrossRefGoogle Scholar
  56. Khoury CK, Greene S, Wiersema J, Maxted N, Jarvis A, Struik PC (2013) An inventory of crop wild relatives of the United States. Crop Sci 53:1496–1508. CrossRefGoogle Scholar
  57. Khoury CK, Heider B, Castañeda-Álvarez NP, Achicanoy HA, Sosa CC, Miller RE et al (2015) Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato (Ipomoea batatas (L.) Lam., I. series Batatas). Front Plant Sci 6:251. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Killian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Hakan O (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, Heidelberg, pp 1–76Google Scholar
  59. Kole C (2011a) Wild crop relatives: genomic and breeding resources. Cereals. Springer, HeidelbergCrossRefGoogle Scholar
  60. Kole C (2011b) Wild crop relatives: genomic and breeding resources. Millets and grasses. Springer, HeidelbergCrossRefGoogle Scholar
  61. Kole C (2011c) Wild crop relatives: genomic and breeding resources. Oilseeds. Springer, HeidelbergCrossRefGoogle Scholar
  62. Kole C (2011d) Wild crop relatives: genomic and breeding resources. Legume crops and forages. Springer, HeidelbergCrossRefGoogle Scholar
  63. Kole C (2011e) Wild crop relatives: genomic and breeding resources. Temperate fruits. Springer, HeidelbergCrossRefGoogle Scholar
  64. Labokas J, Karpavičienė B, Šveistytė L et al (2010) Towards in situ conservation of crop wild relatives in Lithuania. In: First meeting of the ECPGR Wild Species Conservation in Genetic Reserves Working Group and On-farm Conservation and Management Working Group jointly held with the final dissemination meeting of the EU project AGRI GENRES 057-AEGRO. Funchal, Madeira (Portugal)Google Scholar
  65. Lala S, Amri A, Maxted N (2017) Towards the conservation of crop wild relative diversity in North Africa: checklist, prioritisation and inventory. Genet Resour Crop Evol. Google Scholar
  66. Lotze-Campen H (2011) Improved data for integrated modeling of global environmental change. Environ Res Lett 6:41002. CrossRefGoogle Scholar
  67. Magos-Brehm J, Maxted N, Ford-Lloyd BV, Martins-Loução MA (2008) National inventories of crop wild relatives and wild harvested plants: case-study for Portugal. Genet Resour Crop Evol 55:779–796. CrossRefGoogle Scholar
  68. Magos-Brehm J, Maxed N, Martins-Loução MA, Ford-Lloyd BV (2010) New approaches for establishing conservation priorities for socio-economically important plant species. Biodivers Conserv 19:2715–2740. CrossRefGoogle Scholar
  69. MAGRAMA (2011) Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, Spain. Anuario de estadística agraria 2010Google Scholar
  70. MAGRAMA (2014) Ministero de Agricultura, Alimentación y Medio Ambiente. Estrategia Española de Conservación Vegetal 2014–2020. Principios y orientaciones para la conservación de la diversidad vegetal silvestre en España. Accessed 16 July 2017
  71. Markkola H (2005) Regional Red List assessment and biodiversity action plans for crop wild relatives in Ireland. Master Thesis. Faculty of Science of the University of BirminghamGoogle Scholar
  72. Martín-Sánchez JA, Gómez-Colmenarejo M, Del Moral J et al (2003) A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 106:1248–1255. CrossRefPubMedGoogle Scholar
  73. Maxted N (2003) Conserving the genetic resources of crop wild relatives in European protected areas. Biol Conserv 113:411–417. CrossRefGoogle Scholar
  74. Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15:2673–2685. CrossRefGoogle Scholar
  75. Maxted N, Scholten M, Codd R, Ford-Lloyd B (2007) Creation and use of a national inventory of crop wild relatives. Biol Conserv 140:142–159. CrossRefGoogle Scholar
  76. Maxted N, White K, Valkoun J, Konopka J, Hargreaves S (2008) Towards a conservation strategy for Aegilops species. Plant Genet Resour 6:126–141. CrossRefGoogle Scholar
  77. Maxted N, Kell S, Ford-Lloyd B, Dulloo E, Toledo Á (2012) Toward the systematic conservation of global crop wild relative diversity. Crop Sci 52:774–785. CrossRefGoogle Scholar
  78. Maxted N, Brehm JM, Kell S (2013) Resource book for the preparation of National Plans for Conservation of Crop Wild Relatives and LandracesGoogle Scholar
  79. Medail F, Quezel P (1999) Biodiversity hotspots in the Mediterranean basin: setting global conservation priorities. Conserv Biol 13:1510–1513. CrossRefGoogle Scholar
  80. Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterraean basin. Ann Missouri Bot Gard 84:112–127CrossRefGoogle Scholar
  81. MIMA (2006) Ministerio de Industria y Medio Ambiente. Estrategia Española para la Conservación y el Uso Sostenible de los Recursos Genéticos Forestales. Accessed 28 Nov 2017
  82. Molina-Venegas R, Aparicio A, Lavergne S, Arroyo J (2015) The building of a biodiversity hotspot across a land-bridge in the Mediterranean. Proc R Soc B Biol Sci. Google Scholar
  83. Moreno JC coord. (2008) Lista Roja de la flora vascular española. Dirección General del Medio Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas), Madrid, EspañaGoogle Scholar
  84. Müller C, Robertson RD (2014) Projecting future crop productivity for global economic modeling. Agric Econ (UK) 45:37–50. CrossRefGoogle Scholar
  85. NOAA (2017) National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2016, published online January 2017, retrieved on July 15, 2017 from
  86. Panella L, Landucci F, Torricelli R, Gigante D, Donnini D, Venanzoni R, Negri V (2014) The National Crop Wild Relative Strategy for Italy: first steps to be taken.
  87. Parra-Quijano M, Iriondo JM, Torres E (2012a) Improving representativeness of genebank collections through species distribution models, gap analysis and ecogeographical maps. Biodivers Conserv 21:79–96. CrossRefGoogle Scholar
  88. Parra-Quijano M, Iriondo JM, Torres E (2012b) Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genet Resour Crop Evol 59:205–217. CrossRefGoogle Scholar
  89. Pascual H (2004) Lupinus mariae-josephi (Fabaceae), nueva y sorprendente especie descubierta en España. An Jardín Botánico Madrid 61:69–72Google Scholar
  90. Pautasso M (2012) Challenges in the conservation and sustainable use of genetic resources. Biol Lett 8:321–323. CrossRefPubMedGoogle Scholar
  91. Pérez de Castro A, Díez MJ, Nuez F (2005) Evaluation of breeding tomato lines partially resistant to Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus derived from Lycopersicon chilense. Can J Plant Path 27(2):268–275. CrossRefGoogle Scholar
  92. Phillips J, Kyratzis A, Christoudoulou C, Kell S, Maxted N (2014) Development of a national crop wild relative conservation strategy for Cyprus. Genet Resour Crop Evol 61:817–827. CrossRefGoogle Scholar
  93. Phillips J, Asdal Ä, Magos Brehm J, Rasmussen M, Maxted N (2016) In situ and ex situ diversity analysis of priority crop wild relatives in Norway. Divers Distrib. Google Scholar
  94. Pico B, Ferriol M, Diez MJ, Nuez F (1999) Developing tomato breeding lines resistant to tomato yellow leaf curl virus. Plant Breed 118:537–542. CrossRefGoogle Scholar
  95. Pinheiro de Carvalho MÂ, Nóbrega H, Freitas G, Fontinha S, Frese L (2012) Towards the establishment of a genetic reserve for Beta patula Aiton. In: Maxted N, Dulloo ME, Ford-Lloyd BV et al (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford, pp 36–44CrossRefGoogle Scholar
  96. Prosperi JM, Jenczewski E, Angevain M, Ronfort J (2006) Morphologic and agronomic diversity of wild genetic resources of Medicago sativa L. collected in Spain. Genet Resour Crop Evol 53:843–856. CrossRefGoogle Scholar
  97. Romero Zarco C (1996) Sinopsis del género Avena L. (Poaceae, Aveneae) en España peninsular y Baleares. Lagascalia 18:171–198Google Scholar
  98. Ruíz M, Quemada M, García RM et al (2016) Use of thermographic imaging to screen for drought-tolerant genotypes in Brachypodium distachyon. Crop Pasture Sci 67:99–108. CrossRefGoogle Scholar
  99. Sheppard D (1999) Conservation without frontiers—the global view. In: EUROPARC 99. Transcending Borders—Parks for Europe. Zakopane, Poland, p 26Google Scholar
  100. Smekalova TN (2008) National crop wild relative in situ conservation strategy for Russia. In: Maxted N, Ford-Lloyd BV, Kell SP et al (eds) Crop wild relative conservation and use. CAB International, Oxfordshire, pp 143–151Google Scholar
  101. Soler C, Ruiz-Femández J, Monte JV, de Bustos A, Jouve N (1997) The assessment of variability in Spanish populations of wild relatives of cereals. Bocconea 7:107–119Google Scholar
  102. Stamp P, Visser R (2012) The twenty-first century, the century of plant breeding. Euphytica 186:585–591. CrossRefGoogle Scholar
  103. Taylor NG, Kell SP, Holubec V, Parra-Quijano M, Chobot K, Maxted N (2017) A systematic conservation strategy for crop wild relatives in the Czech Republic. Divers Distrib. Google Scholar
  104. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822. CrossRefPubMedGoogle Scholar
  105. Tubiello FN, Fischer G (2007) Reducing climate change impacts on agriculture: global and regional effects of mitigation, 2000–2080. Technol Forecast Soc Change 74:1030–1056. CrossRefGoogle Scholar
  106. Turner N, Meyer R (2011) Synthesis of regional impacts and global agricultural adjustments. In: Yadav S, Redden R, Hatfield J et al (eds) Crop adaptation to climate change. Wiley-Blackwell, Chichester, West Susex, pp 156–165CrossRefGoogle Scholar
  107. UN CBD (2010) United Nations convention on biological diversity conference of the parties 10 decision X/2Google Scholar
  108. UN (2015) United Nations General Assembly. Transforming our world: the 2030 Agenda for Sustainable Development. Accessed 1 Dec 2017
  109. UPOV—International Union for the Protection of New Varieties of Plants (2011) List of the taxa protected by the members of the Union. Geneve, October 2011. Accessed 27 Dec 2017
  110. van Treuren R, Hoekstra R, van Hintum TJL (2017) Inventory and prioritization for the conservation of crop wild relatives in the Netherlands under climate change. Biol Conserv 216:123–139. CrossRefGoogle Scholar
  111. Vincent H, Wiersema J, Kell S et al (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275. CrossRefGoogle Scholar
  112. VMABCC-BIOVERSITY (2009) Libro rojo de parientes silvestres de cultivos de Bolivia. La Paz, BoliviaGoogle Scholar
  113. Whitlock R, Hipperson H, Thompson DBA, Butlin RK, Burke T (2016) Consequences of in situ strategies for the conservation of plant genetic diversity. Biol Conserv 203:134–142. CrossRefGoogle Scholar
  114. Wiersema JH, León B (1999) World economic plants: a standard reference. CRC Press LLC, Boca RatonGoogle Scholar
  115. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y ConservaciónUniversidad Rey Juan CarlosMóstolesSpain
  2. 2.Departamento de Biotecnología-Biología VegetalUniversidad Politécnica de MadridMadridSpain
  3. 3.Facultad de Ciencias AgrariasUniversidad Nacional de Colombia sede BogotáBogotáColombia
  4. 4.Centro Nacional de Recursos FitogenéticosAlcalá de HenaresSpain

Personalised recommendations