Adapting clonally propagated crops to climatic changes: a global approach for taro (Colocasia esculenta (L.) Schott)

  • V. Lebot
  • V. Tuia
  • A. Ivancic
  • G. V. H. Jackson
  • F. Saborio
  • G. Reyes
  • S. Rodriguez
  • G. Robin
  • R. Traoré
  • L. Aboagye
  • J. Onyeka
  • W. van Rensburg
  • V. Andrianavalona
  • A. Mukherjee
  • M. S. Prana
  • D. Ferraren
  • B. Komolong
  • F. Lawac
  • S. Winter
  • M. A. A. Pinheiro de Carvalho
  • T. Iosefa
Research Article

Abstract

Clonally propagated crop species are less adaptable to environmental changes than those propagating sexually. DNA studies have shown that in all countries where taro (Colocasia esculenta (L.) Schott) has been introduced clonally its genetic base is narrow. As genetic variation is the most important source of adaptive potential, it appears interesting to attempt to increase genetic and phenotypic diversity to strengthen smallholders’ capacity to adapt to climatic changes. A global experiment, involving 14 countries from America, Africa, Asia and the Pacific was conducted to test this approach. Every country received a set of 50 indexed genotypes in vitro assembling significant genetic diversity. After on-station agronomic evaluation trials, the best genotypes were distributed to farmers for participatory on-farm evaluation. Results indicated that hybrids tolerant to taro leaf blight (TLB, Phytophthora colocasiae Raciborski), developed by Hawaii, Papua New Guinea and Samoa breeding programmes outperformed local cultivars in most locations. However, several elite cultivars from SE Asia, also tolerant to TLB, outperformed improved hybrids in four countries and in one country none of the introductions performed better than the local cultivars. Introduced genotypes were successfully crossed (controlled crossing) with local cultivars and new hybrids were produced. For the first time in the history of Aroids research, seeds were exchanged internationally injecting tremendous allelic diversity in different countries. If climatic changes are going to cause the problems envisaged, then breeding crops with wide genetic diversity appears to be an appropriate approach to overcome the disasters that will otherwise ensue.

Keywords

Allelic diversity Colocasia esculenta Crossing In vitro distribution On-farm evaluation Selection 

References

  1. Birnbaum K (2006) Crop genetics on modern farms: gene flow between crop populations. In: Motley TJ, Zerega N, Cross H (eds) Darwin's harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 333–346Google Scholar
  2. Brush SB (2000) Genes in the field: on-farm conservation of crop diversity. Lewis Pubs, Boca RatonGoogle Scholar
  3. Camus P, Lebot V (2010) On-farm assessment of clonal introduction of root crops diversity in Vanuatu, Melanesia. Exp Agric 46(4):541–559CrossRefGoogle Scholar
  4. Ceballos H, Kawuki RS, Gracen VE, Yencho GG, Hershey CH (2015) Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128:1647–1667CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chaïr H, Traoré RE, Duval MF, Rivallan R, Mukherjee A, Aboagye LM, Van Rensburg WJ, Andrianavalona V, Pinheiro de Carvalho MAA, Saborio F, Sri Prana M, Komolong B, Lawac F, Lebot V (2016) Genetic diversification and dispersal of taro (Colocasia esculenta (L.) Schott). PloS ONE 11(6):1–19CrossRefGoogle Scholar
  6. Cho JJ (2004) Breeding Hawaiian taros for the future. In: Guarino L, Taylor M, Osborn T (eds) Proceedings of the 3rd taro symposium held in Nadi, Fiji. Secretariat of the Pacific Community, pp 192–196Google Scholar
  7. Dodd RS, Douhovnikoff V (2016) Adjusting to global change through clonal growth and epigenetic variation. Front Ecol Evol 4:86. doi:10.3389/fevo.2016.00086 CrossRefGoogle Scholar
  8. FAO (2014) FAO Statistical database. www.fao.org visited Feb 2014
  9. Fonoti P (2005) Breeding resistance to taro leaf blight (Phytophthora colocasiae) in Samoa. Masters of Crop Science Thesis, USP, Alafua, July, 2005Google Scholar
  10. Fullagar R, Field J, Denham T, Lentfer C (2006) Early and mid Holocene tool-use and processing of taro (Colocasia esculenta), yam (Dioscorea sp.) and other plants at Kuk Swamp in the highlands of Papua New Guinea. J Archaeol Sci 33(1):595–614CrossRefGoogle Scholar
  11. Harding RM, Revil PA, Hafner GJ, Yang I, Maino MK, Devitt LC, Dowling ML, Dale JL (2004) Characterisation of taro viruses and the development of diagnostic tests. In: Guarino L, Taylor M, Osborn T (eds) Proceedings of the 3rd taro symposium held in Nadi, Fiji. Secretariat of the Pacific Community, pp 98–101Google Scholar
  12. Iosefa T, Taylor M, Hunter D, Tuia V (2012) The taro improvement programme in Samoa: sharing genetic resources through networking. FAO RAP-NIAS: plant genetic resources in Asia and the Pacific: impacts and future. In: Proceedings of a symposium held in Tsukuba, Japan. 18th Oct 2011-FAO-p, pp 25–40Google Scholar
  13. Ivancic A, Lebot V (2000) Taro (Colocasia esculenta): genetics and breeding. Collection “Repères”, CIRAD, Montpellier, FranceGoogle Scholar
  14. Ivancic A, Quero Garcia J, Lebot V (2003) Development of visual tools for selecting qualitative corm characteristics of taro (Colocasia esculenta (L.) Schott). Aust J Agric Res 54(6):581–588CrossRefGoogle Scholar
  15. Kreike CM, van Eck HJ, Lebot V (2004) Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor Appl Genet 109:761–768CrossRefPubMedGoogle Scholar
  16. Lebot V, Aradhya M (1991) Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and Oceania. Euphytica 56:55–66Google Scholar
  17. Lebot V, Gunua T, Pardales JR, Prana MD, Thongjiem MS, Viet NV, Yap TC (2004) Characterisation of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Genet Resour Crop Evol 51:381–392CrossRefGoogle Scholar
  18. Lebot V, Ivancic A, Abraham K (2005) The geographical distribution of allelic diversity, a practical means of preserving and using minor root crops genetic resources. Exp Agric 41:475–489CrossRefGoogle Scholar
  19. Matsuda M (2002) Taro, Colocasia esculenta (L.) Schott, in Eastern Asia: its geographical distribution and dispersal into Japan. Doctoral Thesis, Kyoto University, Kyoto, JapanGoogle Scholar
  20. Matthews PJ, Lockhart PJ, Ahmed I (2017) Phylogeography, ethnobotany and linguistics issues arising from research on the natural and cultural history of taro, Colocasia esculenta (L.) Schott. Man India 97(1):353–380Google Scholar
  21. Mercer KL, Perales HR (2010) Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 3:480–493CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mukherjee A, George J, Pillai R, Chakrabarti SK, Naskar SK, Patro R, Nayak S, Lebot V (2016) Development of taro (Colocasia esculenta (L.) Schott) hybrids overcoming its asynchrony in flowering using cryostored pollen. Euphytica 212(1):29–36CrossRefGoogle Scholar
  23. Namkoong G, Lewontin RC, Yanchuk AD (2004) Plant genetic resources management: the next investments in quantitative and qualitative genetics. Genet Resour Crop Evol 51:853–862CrossRefGoogle Scholar
  24. Omane E, Oduro KA, Cornelius EW, Opoku I, Akrofi A, Sharma K, Bandyopadhyay R (2012) First report of leaf blight of taro (Colocasia esculenta) caused by Phytophthora colocasiae in Ghana. Plant Dis 96(2):292CrossRefGoogle Scholar
  25. Ramirez-Villegas J, Challinor AJ, Thornton PK, Jarvis A (2013) Implications of regional improvement in global climate models for agricultural impact research. Environ Res Lett 8(2):024018CrossRefGoogle Scholar
  26. Roullier C, Benoit L, McKey D, Lebot V (2013) Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination. PNAS 110(6):225–2210CrossRefGoogle Scholar
  27. Sardos J, Noyer JL, Malapa R, Bouchet S, Lebot V (2012) Genetic diversity of taro (Colocasia esculenta (L.) Schott) in Vanuatu (Oceania): An appraisal of the distribution of allelic diversity (DAD) with SSR markers. Genet Resour Crop Evol 59(5):805–820CrossRefGoogle Scholar
  28. Scarcelli N, Tostain S, Vigouroux Y, Agbangla C, Dainou O, Pham JL (2006) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop: the case of yam in Benin. Mol Ecol 15(9):2421–2431CrossRefPubMedGoogle Scholar
  29. Singh D, Okpul T (2000) Evaluation of 12 taro (Colocasia esculenta (L.) Schott) leaf blight resistant lines for yield and eating quality in Papua New Guinea. SABRAO J Breed Genet 32(1):39–45Google Scholar
  30. Soulard L, Letourmy P, Cao TV, Lawac F, Chaïr H, Lebot V (2016) Evaluation of vegetative growth, yield and quality related traits in taro (Colocasia esculenta (L.) Schott). Crop Sci 56(3):976–989CrossRefGoogle Scholar
  31. Taylor MB (2002) The establishment of a regional germplasm centre in the Pacific island region. In: Engels JMM, Rao VR, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CAB International, Oxon, pp 104–112Google Scholar
  32. Taylor MB, Tuia V, Sant R, Lesione E, Prasad R, Prasad RL, Vosaki A (2004) Using in vitro techniques for the conservation and utilization of Colocasia esculenta var. esculenta (taro) in a regional genebank. In: Guarino L, Taylor M, Osborn T (eds) Proceedings of the 3rd taro symposium held in Nadi, Fiji. Secretariat of the Pacific Community, pp 69–73Google Scholar
  33. VandenBroucke H, Mournet P, Vignes H, Chair H, Malapa R, Duval MF, Lebot V (2015) Somaclonal variants of taro (Colocasia esculenta Schott) and yam (Dioscorea alata L.) are incorporated into farmers’ varietal portfolios in Vanuatu. Genet Resour Crop Evol 63(3):495–511CrossRefGoogle Scholar
  34. Zettler FW, Jackson GVH, Frison EA (eds) (1989) FAO/IBPGR technical guidelines for the safe movement of edible aroid germplasm. Food and Agriculture Organization of the United Nations, Rome/International Board for Plant Genetic Resources, RomeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • V. Lebot
    • 1
  • V. Tuia
    • 2
  • A. Ivancic
    • 3
  • G. V. H. Jackson
    • 4
  • F. Saborio
    • 5
  • G. Reyes
    • 6
  • S. Rodriguez
    • 7
  • G. Robin
    • 8
  • R. Traoré
    • 9
  • L. Aboagye
    • 10
  • J. Onyeka
    • 11
  • W. van Rensburg
    • 12
  • V. Andrianavalona
    • 13
  • A. Mukherjee
    • 14
  • M. S. Prana
    • 15
  • D. Ferraren
    • 16
  • B. Komolong
    • 17
  • F. Lawac
    • 18
  • S. Winter
    • 19
  • M. A. A. Pinheiro de Carvalho
    • 20
  • T. Iosefa
    • 21
  1. 1.UMR AGAPCIRADPort-VilaVanuatu
  2. 2.SPC, Suva Regional OfficeSuvaFiji
  3. 3.University of MariborHočeSlovenia
  4. 4.PestNetSydneyAustralia
  5. 5.Centro de Investigaciones AgronómicasUniversity of San JoséSan JoséCosta Rica
  6. 6.University of ManaguaManaguaNicaragua
  7. 7.INIVITSanta ClaraCuba
  8. 8.CARDISt VincentTrinidad and Tobago
  9. 9.Université de OuagadougouOuagadougouBurkina Faso
  10. 10.Plant Genetic Resources Research InstituteCSIRBunsoGhana
  11. 11.NRCRIUmudike, UmuahiaNigeria
  12. 12.ARCPretoriaSouth Africa
  13. 13.FOFIFA-CENRADERUAntananarivoMadagascar
  14. 14.CTCRISreekariyam, ThiruvananthapuramIndia
  15. 15.LIPIBogorIndonesia
  16. 16.Visayas State College of AgriculturePhilRootCropsBaybayPhilippines
  17. 17.NARILaePapua New Guinea
  18. 18.VARTCLuganville, SantoVanuatu
  19. 19.DSMZ, LeipzigBraunschweigGermany
  20. 20.IsoPlexis GenebankUniversity of MadeiraFunchal, MadeiraPortugal
  21. 21.SPCApiaSamoa

Personalised recommendations