Assessment of phenotypic diversity in bitter vetch (Vicia ervilia (L.) Willd.) populations

  • Iraklis Livanios
  • Efstathia Lazaridi
  • Penelope J. Bebeli
Research Article

Abstract

Knowledge of populations’ diversity contributes to the optimization of their description and conservation. Characterization and estimation of diversity of neglected and underutilized crops would encourage their re-introduction and utilization. Therefore, the aim of this study was to characterize 49 populations of bitter vetch on the basis of 24 agro-morphological traits and estimate phenotypic diversity among and within populations. A wide diversity was present in the collection for the majority of traits analyzed (mean total phenotypic diversity, HT = 0.52). The mean phenotypic diversity among populations studied (GST) was 0.31. Most traits related to reproductive phase had GST ≥ 0.5, while for most traits high intra-population variation (ΗS) was detected. No significant differences among populations’ mean phenotypic diversity values (0.27 ≤ \(\bar{H}p\) ≤ 0.47) were observed. Principal Component Analysis (PCA) classified the populations into eight distinct groups, mainly due to traits related to reproductive phase and seed yield. The high phenotypic populations’ diversity observed, showed that ex situ conserved populations of bitter vetch constitute an underutilized gene pool that could be re-introduced in cultivated systems and/or utilized by breeding programs and revealed a need for conservation of bitter vetch landraces that are still cultivated.

Keywords

Vicia ervilia Characterization Genetic resources Inter-population diversity Intra-population diversity Landrace Neglected crop 

Supplementary material

10722_2017_539_MOESM1_ESM.docx (308 kb)
Supplementary material 1 (DOCX 308 kb)
10722_2017_539_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 13 kb)
10722_2017_539_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 15 kb)
10722_2017_539_MOESM4_ESM.docx (15 kb)
Supplementary material 4 (DOCX 15 kb)

References

  1. Abbasi MR, Vaezi S, Baghaie N (2007) Genetic diversity of bitter vetch (Vicia ervilia) of the National Plant Gene Bank of Iran based on agro-morphological traits. Iran J Rangel for Plant Breed Genet Resources 15:113–128Google Scholar
  2. Abbo S, Zezak I, Schwartz E, Lev-Yadun S, Gopher A (2008) Experimental harvesting of wild peas in Israel: implications for the origins of near east farming. J Archaeol Sci 35:922–929. doi:10.1016/j.jas.2007.06.016 CrossRefGoogle Scholar
  3. Abbo S, van-Oss RP, Gopher A, Saranga Y, Ofner I, Peleg Z (2013) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19:351–360. doi:10.1016/j.tplants.2013.12.002 CrossRefGoogle Scholar
  4. Abd El Moneim AM (1993) Agronomic Potential of three vetches (Vicia spp.) under rainfed conditions. J Agron Crop Sci 170:113–120. doi:10.1111/j.1439-037X.1993.tb01064.x CrossRefGoogle Scholar
  5. Acosta-Quezada PG, Martínez-Laborde JB, Prohens J (2011) Variation among tree tomato (Solanum betaceum Cav.) accessions from different cultivar groups: implications for conservation of genetic resources and breeding. Genet Resour Crop Evol 58:943–960. doi:10.1007/s10722-010-9634-9 CrossRefGoogle Scholar
  6. Arabestani A, Kadivar M, Amoresano A, Illiano A, Di Pierro P, Porta R (2016) Bitter vetch (Vicia ervilia) seed protein concentrate as possible source for production of bilayered films and biodegradable containers. Food Hydrocoll 60:232–242. doi:10.1016/j.foodhyd.2016.03.029 CrossRefGoogle Scholar
  7. Assefa A, Labuschange MT (2004) Phenotypic variation in barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia. Biodivers Conservation 13:1441–1451. doi:10.1023/B:BIOC.0000021324.90280.6e CrossRefGoogle Scholar
  8. Aura JE, Carrión Y, Estrelles E, Jordá GP (2005) Plant economy of hunter-gatherer groups at the end of the last Ice Age: plant acroremains from the cave of Santa Maira (Alacant, Spain) ca. 12000-9000 B.P. Veget Hist Archaeobot 14:542–550. doi:10.1007/s00334-005-0002-1 CrossRefGoogle Scholar
  9. Ayan I, Acar Z, Basaran U, Asci OO, Mut H (2006) Determination of forage and grain yields of some Vicia ervilia L. lines in Samsun ecological conditions. J Agric Faculty, OMU 21:318–322Google Scholar
  10. Bakhsh A, Iqbal ShM, Cheema NM (2013) Inheritance of morphological characters associated with plant and fried seeds in lentil (Lens culinaris Medik.). Pak J Bot 45:1497–1502Google Scholar
  11. Başbağ M, Biçer BT (2008) Determination of seed yield and yield components of some bitter vetch (Vicia ervilia (L.) Willd.) lines under Diyarbakir conditions. J Agric Faculty HR U 12:19–25Google Scholar
  12. Blair MW, Soler A, Cortés AJ (2012) Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS ONE 7:e49488. doi:10.1371/journal.pone.0049488 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brummitt N, Bachman SP, Aletrari E, Chadbum H, Griffiths-Lee J, Lutz M, Moat J, Rivers MC, Syfert MM, Lughadha EMN (2015) The Sampled Red List Index for plants, phase II: ground-truthing specimen-based conservation assessments. Phil Trans R Soc B 370:20140015. doi:10.1098/rstb.2014.0015 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Çakmakçi S, Açikgöz E (1994) Components of seed and straw yield in common vetch (Vicia sativa L.). Plant Breed 113:71–74. doi:10.1111/j.1439-0523.1994.tb00704.x CrossRefGoogle Scholar
  15. Caldas GV, Blair MW (2009) Inheritance of seed condensed tannins and their relationship with seed–coat color and pattern genes in common bean (Phaseolus vulgaris L.). Theor Appl Genet 119:131–142. doi:10.1007/s00122-009-1023-4 CrossRefPubMedGoogle Scholar
  16. Carmona CP, Rota C, Azcárate FM, Peco B (2015) More for less: ampling strategies of plant functional traits across local environmental gradients. Funct Ecol 29:579–588. doi:10.1111/1365-2435.12366 CrossRefGoogle Scholar
  17. Çöçü S, Uzun O (2011) Germination, seedling growth and ion accumulation of bitter vetch (Vicia ervillia (L.) Willd.) lines under NaCl stress. Afr J Biotechnol 10:15869–15874. doi:10.5897/AJB11.279 CrossRefGoogle Scholar
  18. Cubero JI, Pérez de la Vega M, Fratini R (2009) Origin, phylogeny, domestication and spread. In: Erskine W, Muehlbauer F, Sarker A, Sharma B (eds) The lentil: Botany, production and uses. CAB International, Wallingford, pp 13–33CrossRefGoogle Scholar
  19. Dje Y, Ater M, Lefebvre C, Vekemans X (1998) Patterns of morphological and allozyme variation in sorghum landraces of Northwestern Morocco. Genet Resour Crop Evol 45:541–548. doi:10.1023/A:1008629717825 CrossRefGoogle Scholar
  20. Dong Y, Wang YZ (2015) Seed shattering: from models to crops. Front Plant Sci 6:476. doi:10.3389/fpls.2015.00476 PubMedPubMedCentralGoogle Scholar
  21. El Fatehi S, Béna G, Sbabou L, Filali-Maltouf A, Ater M (2013) Preliminary results for use SSR markers in Bitter vetch “Vicia ervillia (L.) Willd.” IJRAFS 1:40–46. doi: http://www.ijsk.org/ijrafs.htmlGoogle Scholar
  22. El Fatehi S, Béna G, Sbabou L, Filali-Maltouf A, Ater M (2016) Genetic diversity of morrocan bitter vetch Vicia ervilia (L.) Willd. Landraces revealed by morphological and SSR markers. AJCS 10:717–725. doi:10.21475/ajcs.2016.10.05.p7432 Google Scholar
  23. FAO (2013) Draft genebank standards for plant genetic resources for food and agriculture. http://www.fao.org/agriculture/crops/core-themes/ theme/seeds-pgr/conservation/gbs/en/
  24. Farran MT, Halaby WS, Barbour GW, Uwayjan MG, Sleiman FT, Ashkarian VM (2005) Effects of feeding Ervil (Vicia ervilia) grains soaked in water or acetic acid on performance and internal organ size of broilers and production and egg quality of laying hens. Poultry Sci 84:1723–1728. doi:10.1093/ps/84.11.1723 CrossRefGoogle Scholar
  25. Farshadfar M, Farshadfar E (2008) Genetic variability and path analysis of Chickpea (Cicer arientinum L.) landraces and lines. J Appl Sci 8:3951–3956. doi:10.3923/jas.2008.3951.3956 CrossRefGoogle Scholar
  26. Fırıncıoğlu HK, Ünal S, Erbektaş E, Doğruyol SUL (2010) Relationships between seed yield and yield components in common vetch (Vicia sativa ssp. sativa) populations sown in spring and autumn in central Turkey. Field Crop Res 116:30–37. doi:10.1016/j.fcr.2009.11.005 CrossRefGoogle Scholar
  27. Flitner M (1995) Sammler, Räuber und Gelehrte. Die politischen Interessen an pflanzengenetischen Ressourcen 1895–1995. Frankfurt, CampusGoogle Scholar
  28. Fratini R, Pérez de la Vega M (2011) Genetics of economic traits in lentil: seed traits and adaptation to climatic variations. Grain legumes 57:18–20Google Scholar
  29. Genesys (2016) Gateway to plant genetic resources. https://www.genesys-pgr.org/. Assessed on 12 Oct 2016
  30. Gil J, Cubero JI (1993) Multivariate analysis of the Vicia sativa L. aggregate. Bot J Linn Soc 113:389–400. doi:10.1006/bojl.1993.1076 CrossRefGoogle Scholar
  31. Gutierrez N, Avila CM, Moreno MT, Torres AM (2008) Development of SCAR markers linked to zt-2, one of the genes controlling absence of tannins in faba bean. Aust J Agric Res 59:62–68. doi:10.1071/AR07019 CrossRefGoogle Scholar
  32. Hammer K, Hammer–Spahillari M, Khoshbakht K (2012) Red lists for cultivated species: experiences with the IUCN list of threatened plants. In: Padulosi S, Bergamini N, Lawrence T (eds) On-farm conservation of neglected and underutilized species: status, trends and novel approaches to cope with climate change. Proc Int Conf, Friedrichsdorf, Frankfurt, 14–16 June, 2011. Bioversity International, Rome, Italy, pp 127–136Google Scholar
  33. Hamrick JL, Godt MJW (1997) Allozyme diversity in cultivated crops. Crop Sci 37:26–30. doi:10.2135/cropsci1997.0011183X003700010004x CrossRefGoogle Scholar
  34. Hay FR, Probert RJ (2013) Advances in seed conservation of wild plant species: a review of recent research. Conserv Physiol 1:1–11. doi:10.1093/conphys/cot030 CrossRefGoogle Scholar
  35. Hosseinzadeh Z, Pakravan M, Tavassoli A (2008) Micromorphology of seed in some Vicia species from Iran. Rostaniha 9:96–107Google Scholar
  36. Hrisova I, Atanassova J, Marinova E (2016) Plant economy and vegetation of the iron age in Bulgaria archaeobotanical evidence from pit deposits. Archaeol Anthropol Sci. doi:10.1007/s12520-016-0328-x Google Scholar
  37. IBM Corp. Released (2011) IBM SPSS statistics for windows, Version 20.0 Armonk, NY: IBM CorpGoogle Scholar
  38. IBPGR and ICARDA (1985) Lentil Descriptors. IBPGR Secretariat, RomeGoogle Scholar
  39. Idrissi O, Udupa MS, de Keyser E, van Damme P, de Rick J (2016) Functional genetic diversity analysis and identification of associated Simple Sequence Repeats and Amplified Fragment Length Polymorphism markers to drought tolerance in Lentil (Lens culinaris ssp. culinaris Medicus) landraces. Plant Mol Biol Rep 34:659–680. doi:10.1007/s11105-015-0940-4 CrossRefGoogle Scholar
  40. Inci NE, Toker C (2011) Screening and selection of faba beans (Vicia faba L.) for cold tolerance and comparison to wild relatives. Genet Resour Crop Evol 58:1169–1175. doi:10.1007/s10722-010-9649-2 CrossRefGoogle Scholar
  41. Ishiyaku MF, Singh BB (2004) Inheritance of purple pigmentation on vegetative parts in cowpea (Vigna unguiculata (L.) Walp.). Sci Hortic 102:369–373. doi:10.1016/j.scienta.2004.04.001 CrossRefGoogle Scholar
  42. IUCN (2016) The IUCN red list of threatened species. Version 2016–2. <http://www.iucnredlist.org>. (assessed on 12 Oct 2016)
  43. Jaenicke H, Höschle-Zeledon I (2006) Strategic framework for underutilized plant species research and development, with special reference to Asia and the Pacific, and to Sub-Saharan Africa. International Centre for Underutilised Crops, Colombo, Sri Lanka and Global Facilitation Unit for Underutilized Species, Rome, Italy. pp 33Google Scholar
  44. Kaplan M, Kokten K, Uzun S (2014) Fatty acid and metal composition of the seeds of Vicia ervilia varieties from Turkey. Chem Nat Compd 50:117–119. doi:10.1007/s10600-014-0881-4 CrossRefGoogle Scholar
  45. Kuehl RO (2000) Design of experiments: statistical principles of research design and analysis. Duxbury, Pacific GroveGoogle Scholar
  46. Kujur A, Upadhyaya HD, Bajaj D, Gowda CLL, Sharma S, Tyagi AK, Parida SK (2016) Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea. Sci Rep 6:27968. doi:10.1038/srep27968 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ladizinsky G (1998) Plant evolution under domestication. Kluwer Academic Publishers, Dordrecht/Boston/LondonCrossRefGoogle Scholar
  48. Ladizinsky G, van Oss H (1984) Genetic relationships between wild and cultivated Vicia ervilia (L.) Willd. Bot J Linn Soc 89:97–100CrossRefGoogle Scholar
  49. Larbi A, Abd El Moneim AM, Nakkoul H, Jammal B, Hassan S (2011) Intra-species variations in yield and quality determinants in Vicia species: 1. bitter vetch (Vicia ervilia L.). Anim Feed Sci Technol 65:278–287. doi:10.1016/j.anifeedsci.2010.09.004 CrossRefGoogle Scholar
  50. Lazaridi E, Ntatsi G, Savvas D, Bebeli PJ (2016) Diversity in cowpea (Vigna unguiculata (L.) Walp.) local populations from Greece. Genet Resour Crop Evol doi:10.1007/s10722-016-0452-6
  51. López Bellido L (1994) Neglected crops: 1492 from a different perspective. In: Hernándo Bermejo JE, León J (eds) Plant production and protection series no. 26. FAO. Italy, Rome, pp 273–288Google Scholar
  52. Marinova E, Popova F (2008) Cicer arietinum (chick pea) in the Neolithic and Chalcolithic of Bulgaria: implications for cultural contacts with the neighboring regions. Veget Hist Archaeobot 17:73–80. doi:10.1007/s00334-008-0159-5 CrossRefGoogle Scholar
  53. Maxted N, Hargreaves S, Kell SP, Amri A, Street K, Shehadeh A, Piggin J, Konopka J (2012) Temperate forage and pulse legume genetic gap analysis. Bocconea 24:115–146Google Scholar
  54. McDonald MB, Copeland LO (1997) Seed production: principles and practices. Springer Science+Business Media Dodrecht, New York, p 359CrossRefGoogle Scholar
  55. Mihailović V, Mikić AM, Karagić D, Katić S, Pataki I, Matić R (2007) Seed yield and seed yield components in winter cultivars of four vetch (Vicia L.) species. In: Rosellini D, Veronesi F (eds) Breeding and seed production for conventional and organic agriculture. Proc XXVI meeting EUCARPIA fodder crops and amenity grasses section, XVI meeting of the EUCARPIA Medicago spp. group, Perugia, Italy, 2–7 September 2006, pp 130–133Google Scholar
  56. Mikić AM (2016) Presence of vetches (Vicia spp.) in agricultural and wild floras of ancient Europe. Genet Resour Crop Evol 63:745–754. doi:10.1007/s10722-016-0382-3 CrossRefGoogle Scholar
  57. Mikić AM, Michailović V (2014) Potential of some neglected European annual legume crops for forage production. In: Sokolović D et al (eds) Quantitative Traits Breeding for Multifunctional Grasslands and Turf. Springer, Dordrecht, pp 151–154. doi:10.1007/978-94-017-9044-4_22
  58. Mikić AM, Medović A, Jovanović Ž, Stanisavljević N (2015) A note on the earliest distribution, cultivation and genetic changes in bitter vetch (Vicia ervilia) in ancient Europe. Genetika 47:1–11. doi:10.2298/GENSR1501001M CrossRefGoogle Scholar
  59. Miller N, Enneking D (2014) Bitter Vetch (Vicia ervilia) Ancient medicinal crop and farmers’ favorite for feeding livestock. In: Minnis PE (ed) New lives for ancient and extinct crops. The University of Arizona Press, Tucson, pp 254–268Google Scholar
  60. Mirali N, El-Khouri S, Rizq F (2007) Genetic diversity and relationships in some Vicia species as determined by SDS-PAGE of seed proteins. Biol Plant 51:660–666. doi:10.1007/s10535-007-0139-0 CrossRefGoogle Scholar
  61. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323CrossRefPubMedPubMedCentralGoogle Scholar
  62. Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larson H, Pinheiro de Carvalho MAA, Rubiales D, Russell J, dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev 30:237–269. doi:10.1051/agro/2009032 CrossRefGoogle Scholar
  63. Nozzolillo C (1981) Shoot-Tip Abortion in Pea Seedlings: relationship to Genetic Constitution and Temperature of Germination. Environ Exp Bot 21:187–197. doi:10.1016/0098-8472(81)90025-3 CrossRefGoogle Scholar
  64. Oybak Dönmez E, Akyol AA, Karadağ R, Torgan E, İren K (2017) Ancient plant remains with special reference to buckthorn, Frangula alnus Mill., pyrenes from Dascyleum, Balıkesir, NW Turkey. Acta Soc Bot Pol 86:3520. doi: https://doi. org/10.5586/asbp.3520Google Scholar
  65. Podolska G (2014) Plant lodging, effects, and control. In: Gliński J, Horabik J, Lipiec J (eds) Encyclopedia of agrophysics. Part of the series encyclopedia of Earth Sciences Series, Springer, Netherlands, pp 609–610Google Scholar
  66. Porceddu E, Damania AB (1992) Sampling variation in genetic resources of seed crops: a review. Genet Resour Crop Evol 39:39–49CrossRefGoogle Scholar
  67. Porta R, Di Pierro P, Sabbah M, Regalado-Gonzales C, Mariniello L, Kadivar M, Arabestani A (2016) Blend films of pectin and bitter vetch (Vicia ervilia) proteins: properties and effect of transglutaminase. Innovative Food Sci Emerg Technol 36:245–251. doi:10.1016/j.ifset.2016.07.001 CrossRefGoogle Scholar
  68. Reed K (2016) Agricultural change in Copper Age Croatia (ca. 4500-2500 cal B.C.)? Archaeol Anthropol Sci. doi: 10.1007/s12520-016-0330-3
  69. Rohlf FJ (1998) NTSYS - Numerical Taxonomy and Multivariate Analysis System. Exeter Publications, NYGoogle Scholar
  70. Sadeghi Gh, Samie A, Pourreza J, Rahmani HR (2004) Canavanine content and toxicity of raw and treated bitter vetch (Vicia ervilia) seeds for broiler chicken. Int J Poult Sci 3:522–529. doi:10.3923/ijps.2004.522.529 CrossRefGoogle Scholar
  71. Sadeghi Gh, Mohammadi L, Ibrahim SA, Gruber KJ (2009) Use of bitter vetch (Vicia ervilia) as feed ingredient for poultry. World Poult Sci J 65:51–63. doi:10.1017/S0043933909000004 CrossRefGoogle Scholar
  72. Sakr MM, Gowayed SMH, Hassan WM, Almghraby OA (2010) Identification of some wild Vicia species using electrophoretic analysis of seed proteins and amino acids composition. Indian J Sci Technol 3:490–498Google Scholar
  73. Sameri M, Nakamura S, Nair SK, Takeda K et al (2009) A quantitative trait locus for reduced culm internode length in barley segregates as a Mendelian gene. Theor Appl Genet 118:643–652. doi:10.1007/s00122-008-0926-9 CrossRefPubMedGoogle Scholar
  74. Saoub HM, Akash MW (2012) Variations among two vetch landrace species in Jordan. J Food Agric Environ 10:763–767Google Scholar
  75. SAS Institute Inc (2009) JMP/Sales Department. Cary, NCGoogle Scholar
  76. Schellekens J, Barberá CG, Buurman P (2013) Potential vegetation markers—analytical pyrolysis of modern plant species representative of Neolithic SE Spain. J Archaeol Sci 40:365–379. doi:10.1016/j.jas.2012.08.036 CrossRefGoogle Scholar
  77. Schoen DJ, Brown AHD (2001) The conservation of wild plant species in seed bans. Bioscience 51:960–966CrossRefGoogle Scholar
  78. Seydoșoğlu S, Saruhan V, Kökten K (2015) Researches on determination yield and yield components of some bitter vetch (Vicia ervilia (L.) Willd.) genotypes in ecological conditions of Diyarbakır. Gaziosmanpașa Üniversitesi Ziraat Fakültesi Dergisi 32:107–115Google Scholar
  79. Siddique KHM, Loss SP, Regan KL, Jettner RL (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust J Agric Res 50(375):87. doi:10.1071/A98096 Google Scholar
  80. Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. European J of Agronomy 15:267–280. doi:10.1016/S1161-0301(01)00106-X CrossRefGoogle Scholar
  81. Siddique KHM, Loss SP, Thomson BD (2003) Cool season grain legumes in dryland Mediterranean environments of Western Australia: Significance of early flowering. In: Saxena NP (ed) Management of agricultural drought. pp 151-162Google Scholar
  82. Smýkal P (2014) Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery. Czech J Genet Plant Breed 50:52–64Google Scholar
  83. Suso MJ, Bebeli PJ, Christmann S, Mateus C, Negri V, Pinheiro de Carvalho MAA, Torricelli R, Veloso MM (2016) Enhancing legume ecosystem services through an understanding of plant-pollinator interplay. Front Plant Sci 7:333. doi:10.3389/fpls.2016.00333 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Terzopoulos PJ, Bebeli PJ (2010) Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci Hortic-Amsterdam 126:138–144. doi:10.1016/j.scienta.2010.06.022 CrossRefGoogle Scholar
  85. Terzopoulos PJ, Kaltsikes PJ, Bebeli PJ (2003) Collection, evaluation and classification of Greek populations of faba bean (Vicia faba L.). Genet Resour Crop Evol 50:373–381. doi:10.1023/A:1023962618319 CrossRefGoogle Scholar
  86. Terzopoulos PJ, Kaltsikes PJ, Bebeli PJ (2008) Determining the sources of heterogeneity in Greek faba bean local populations. Field Crop Res 105:124–130. doi:10.1016/j.fcr.2007.08.006 CrossRefGoogle Scholar
  87. Thomas K, Thanopoulos R, Knüpffer H, Bebeli PJ (2012) Plant genetic resources of Lemnos (Greece), an isolated island in the Northern Aegean Sea, with emphasis on landraces. Genet Resour Crop Evol 59:1417–1440. doi:10.1007/s10722-011-9770-x CrossRefGoogle Scholar
  88. Thomas K, Thanopoulos R, Knüpffer H, Bebeli PJ (2013) Plant genetic resources in a touristic island: the case of Lefkada (Ionian Islands, Greece). Genet Resour Crop Evol 60:2431–2455. doi:10.1007/s10722-013-0011-3 CrossRefGoogle Scholar
  89. Toklu F, Biçer BT, Karaköy T (2009) Agro-morphological characterization of the Turkish lentil landraces. Afr J Biotechnol 8:4121–4127Google Scholar
  90. Tosti N, Negri V (2005) On-going on-farm microevolutionary processes in neighbouring cowpea landraces revealed by molecular markers. Theor Appl Genet 110:1275–1283. doi:10.1007/s00122-005-1964-1 CrossRefPubMedGoogle Scholar
  91. Turk M (1999) Effects of sowing rate and irrigation on dry biomass and grain yield of bitter vetch (Vicia ervilia) and narbon vetch (Vicia narbonensis). Indian J Agr Sci 69:438–443Google Scholar
  92. UPOV (2011) International Union for the protection of new varieties of plants. common vetch (Vicia sativa L.) Guidelines for the conduct of tests for distinctness, uniformity and stability. Geneva, SwitzerlandGoogle Scholar
  93. Valamoti SM (2009) An archaeobotanical investigation of prehistoric diet in Greece (in Greek). University Studio Press, ThessalonikiGoogle Scholar
  94. Valamoti SM, Moniaki A, Karathanou A (2011) An investigation of processing and consumption of pulses among prehistoric societies: archaeobotanical, experimental and ethnographic evidence from Greece. Veget Hist Archaeobot 20:381–396. doi:10.1007/s00334-011-0302-6 CrossRefGoogle Scholar
  95. Van Hintum ThJL (1995) Hierarchical approaches to the analysis of genetic diversity in crop plants. In: Hodgkin T, Brown AHD, van Hintum Th JL, Morales EAV (eds) Core collections of plant genetic resources. John Wiley and Sons, Chichester, pp 23–34Google Scholar
  96. Vavilov NI (1996) Five continents (New translation). International Plant Genetic Resources Institute, RomeGoogle Scholar
  97. Warkentin T, Smykal P, Coyne CJ, Weeden N, Domoney C, Bing D, Leonforte T, Zong X, Dixit G, Boros L, Mc Phee K, Mc Gee RJ, Burstin J, Ellis N (2015) Pea (Pisum sativum L.). In: De Ron A (ed) Handbook of plant breeding 10: grain legumes. Springer Science and Business Media, New York, pp 37–83Google Scholar
  98. Wasilykova K, Koliński R (2013) The role of plants in the economy of Tell Arbid, north-east Syria, in the Post-Akkadian Period and Middle Bronze Age. Acta Palaeobot 53:263–293. doi:10.2478/acpa-2013-0010 Google Scholar
  99. Weller J, Ortega R (2015) Genetic control of flowering time in legumes. Front Plant Sci 6:207. doi:10.3389/fpls.2015.00207 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Will M (2008) Promoting value chains of neglected and underutilized species for pro-poor growth and biodiversity conservation. Global Facilitation Unit for Underutilized Species (GFU), Bioversity International, RomeGoogle Scholar
  101. Yamaguchi N, Sayama T, Yamazaki H, Miyoshi T, Ishimoto M, Funatsuki H (2014) Quantitative trait loci associated with lodging tolerance in soybean cultivar ‘Toyoharuka’. Plant Breed 64:300–308. doi:10.1270/jsbbs.64.300 Google Scholar
  102. Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Oxford University Press Inc, New YorkGoogle Scholar
  103. Zohary D, Hopf M, Weiss E (eds) (2012) Pulses. In: Domestication of plants in the Old World. The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th edn. Oxford University Press, UK, pp 75–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Iraklis Livanios
    • 1
  • Efstathia Lazaridi
    • 1
  • Penelope J. Bebeli
    • 1
  1. 1.Laboratory of Plant Breeding and Biometry, Department of Crop ScienceAgricultural University of AthensAthensGreece

Personalised recommendations