Genetic Resources and Crop Evolution

, Volume 64, Issue 7, pp 1485–1490 | Cite as

High selfing rate inferred for white fonio [Digitaria exilis (Kippist.) Stapf] reproductive system opens up opportunities for breeding programs

  • Adeline Barnaud
  • Yves Vigouroux
  • Mamadou Tely Diallo
  • Sani Idi Saidou
  • Marie Piquet
  • Mamadou Billo Barry
  • Yacoubou Bakasso
  • Leila Zekraoui
  • Ronan Rivallan
  • Ndjido A. Kane
  • Claire Billot
Short Communication

Abstract

In a context of the global major changes, it is mandatory to enlarge the range of crops supporting food security and pay great attention to neglected and underutilized species. However, basic knowledge of the biology of many neglected and underutilized species is still lacking to increase their yields. In this study, the mating system of white fonio [Digitaria exilis (Kippist.) Stapf], a West African minor and promising cereal, is assessed. Progenies arrays from both homozygous and heterozygous mothers were genotyped with microsatellites markers. The rate of genotyping errors in the experiments was assessed and a likelihood framework was used to determine the probability of different mating systems: outcrossing, self-fertilization and apomixis. The results suggested that white fonio has a highly selfing reproductive system with a possible outcrossing rate of 1.7%. Understanding the reproduction system of white fonio opens up opportunities for more effective breeding programs and a wider use of this cereal for food security improvement.

Keywords

Agrobiodiversity Digitaria exilis Fonio millet Mating system NUS Poaceae SSR 

References

  1. Abdel-Ghani AH, Parzies HK, Omary A (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595CrossRefPubMedGoogle Scholar
  2. Adoukonou-Sagbadja H, Wagner C, Dansi A, Ahlemeyer J, Daïnou O, Akpagana K, Ordon F, Friedt W (2007) Genetic diversity and population differentiation of traditional fonio millet (Digitaria spp.) landraces from different agro-ecological zones of West Africa. Theor Appl Genet 115:917–931CrossRefPubMedGoogle Scholar
  3. Adoukonou-Sagbadja H, Wagner C, Ordon F, Friedt W (2010) Reproductive system and molecular phylogenetic relationships of fonio millets (Digitaria spp., Poaceae) with some polyploid wild relatives. Trop Plant Biol 3:240–251CrossRefGoogle Scholar
  4. Barnaud A, Trigueros G, McKey D, Joly HI (2008) High outcrossing rates in fields with mixed sorghum landraces: How are landraces maintained? Heredity 101:445–452CrossRefPubMedGoogle Scholar
  5. Barnaud A, Vignes H, Risterucci A-MM, Noyer J-L, Pham JL, Blay C, Buiron M et al. (2012) Development of nuclear microsatellite markers for the fonio, Digitaria exilis (Poaceae), an understudied West African cereal. Am J Bot 99:e105–e107CrossRefPubMedGoogle Scholar
  6. Barrett S (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284CrossRefPubMedGoogle Scholar
  7. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758CrossRefPubMedGoogle Scholar
  8. Charlesworth D (2006) Evolution of plant breeding systems. Curr Biol 16:R726–R735CrossRefPubMedGoogle Scholar
  9. Einfeldt C, Ceccarelli S, Grando S (2005) Heterosis and mixing effects in barley under drought stress. Plant Breed 24:350–355CrossRefGoogle Scholar
  10. Ellstrand NC, Foster KW (1983) Impact of population structure on the apparent outcrossing rate of grain sorghum (Sorghum bicolor). Theor Appl Genet 66:323–327PubMedGoogle Scholar
  11. FAO (1998) State of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  12. FAOSTAT (2004) Food and Agriculture Organization of the United Nations, Statistical Databases. Online at. http://faostat.fao.org
  13. Hilu KW, M’Ribu KW, Liang H, Mandelbaum C (1997) Fonio millets: ethnobotany, genetic diversity and evolution. S Afr J Bot 63:185–190CrossRefGoogle Scholar
  14. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  15. Scarcelli N, Couderc M, Baco MN (2013) Clonal diversity and estimation of relative clone age: application to agrobiodiversity of yam (Dioscorea rotundata). BMC Plant Biol 13:178CrossRefPubMedPubMedCentralGoogle Scholar
  16. Stamp P, Messmer R, Walter A (2012) Competitive underutilized crops will depend on the state funding of breeding programmes: an opinion on the example of Europe. Plant Breed 131:461–464CrossRefGoogle Scholar
  17. Team RD (2015) R: a language and environment for statistical computingGoogle Scholar
  18. Varshney RK, Glaszmann JC, Leung H (2010) More genomic resources for less-studied crops. Trends Biotechnol 28:452–460CrossRefPubMedGoogle Scholar
  19. Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19:1251–1260CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Adeline Barnaud
    • 1
    • 2
    • 3
  • Yves Vigouroux
    • 1
  • Mamadou Tely Diallo
    • 2
    • 3
    • 4
    • 6
  • Sani Idi Saidou
    • 2
    • 5
    • 6
  • Marie Piquet
    • 1
    • 2
    • 3
  • Mamadou Billo Barry
    • 4
  • Yacoubou Bakasso
    • 5
  • Leila Zekraoui
    • 1
    • 2
    • 3
  • Ronan Rivallan
    • 6
  • Ndjido A. Kane
    • 2
    • 3
  • Claire Billot
    • 6
  1. 1.IRDUMR DIADEMontpellierFrance
  2. 2.LMI LAPSEDakarSenegal
  3. 3.ISRA, LNRPVCentre de Bel AirDakarSenegal
  4. 4.IRAGConakryGuinea
  5. 5.University Abdou MoumouniNiameyNiger
  6. 6.CIRADUMR AGAPMontpellierFrance

Personalised recommendations