Genetic Resources and Crop Evolution

, Volume 64, Issue 6, pp 1295–1312 | Cite as

Genotypic and phenotypic changes in wild barley (Hordeum vulgare subsp. spontaneum) during a period of climate change in Jordan

  • I. ThormannEmail author
  • P. Reeves
  • S. Thumm
  • A. Reilley
  • J. M. M. Engels
  • C. M. Biradar
  • U. Lohwasser
  • A. Börner
  • K. Pillen
  • C. M. Richards
Research Article


Climate change and other anthropogenic disturbances can lead to the loss of genetic variation and thereby affect evolutionary potential and survival of plant populations in the wild. We examined these predictions in the primary wild relative of barley, Hordeum vulgare L. subsp. spontaneum (K. Koch) Thell., within its center of diversity, in Jordan. Changes in genotypic and phenotypic diversity were assessed using seed samples collected in 1981 and 2012 from the same 18 sites across Jordan. The overall population structure was conserved, but we observed an increase of within population genetic diversity and a reduction in population differentiation. Phenotypic variation differed among years and sites but the magnitude and direction of change variated among sites. While the sampled region became significantly hotter and drier during this period, simple correlation models did not support association between measures of climate change and the observed genetic and phenotypic changes. Agricultural activities that promote disturbance and demographic fluctuations may affect crop wild relatives that grow in agricultural landscapes, in unexpected ways. The observed increase in genetic diversity within populations might be explained by increased migration or by an advantage of increased genetic variation in the face of variable environmental conditions. This study provides a new perspective on the range of possible responses of crop wild relatives to environmental pressures.


Crop wild relative Re-collection Genetic erosion Temporal change In situ conservation Hordeum vulgare subsp. spontaneum 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10722_2016_437_MOESM1_ESM.pdf (46 kb)
Supplementary material 1 (PDF 45 kb)
10722_2016_437_MOESM2_ESM.pdf (575 kb)
Supplementary material 2 (PDF 575 kb)
10722_2016_437_MOESM3_ESM.pdf (138 kb)
Supplementary material 3 (PDF 138 kb)
10722_2016_437_MOESM4_ESM.pdf (141 kb)
Supplementary material 4 (PDF 140 kb)
10722_2016_437_MOESM5_ESM.pdf (174 kb)
Supplementary material 5 (PDF 174 kb)
10722_2016_437_MOESM6_ESM.pdf (134 kb)
Supplementary material 6 (PDF 134 kb)


  1. Abbott RJ, Gomes MF (1989) Population genetic structure and outcrossing rate of Arabidopsis thaliana (L.) Heynh. Heredity 62:411–418CrossRefGoogle Scholar
  2. Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595PubMedCrossRefGoogle Scholar
  3. Akimoto M, Shimamoto Y, Morishima H (1999) The extinction of genetic resources of Asian wild rice, Oryza rufipogon Griff.: a case study in Thailand. Genet Resour Crop Evol 46:419–425CrossRefGoogle Scholar
  4. Al-Bakri JT, Taylor JC, Brewer TR (2001) Monitoring land use change in the Badia transition zone in Jordan using aerial photography and satellite imagery. Geogr J 167(3):248–262CrossRefGoogle Scholar
  5. Al-Bakri JT, Ajlouni M, Abu-Zanat M (2008) Incorporating land use mapping and participation in Jordan. Mt Res Dev 28(1):49–57CrossRefGoogle Scholar
  6. Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schönswetter P, Lagaye C, Taberlet P, Brochmann C (2012) Genetic consequences of climate change for northern plants. Proc R Soc B 279(1735):2042–2051PubMedPubMedCentralCrossRefGoogle Scholar
  7. Backes G, Madsen L, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A (2003) Localization of genes for resistance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and wild barley (Hordeum vulgare subsp. spontaneum) line. Theor Appl Genet 106:353–362PubMedCrossRefGoogle Scholar
  8. Baek HJ, Beharav A, Nevo E (2003) Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor Appl Genet 106(3):397–410PubMedCrossRefGoogle Scholar
  9. Barry MB, Pham JL, Béavogui S, Ghesquière A, Ahmadi N (2008) Diachronic (1979–2003) analysis of rice genetic diversity in Guinea did not reveal genetic erosion. Genet Resour Crop Evol 55(5):723–733CrossRefGoogle Scholar
  10. Bedada G, Westerbergh A, Nevo E, Korol A, Schmid KJ (2014) DNA sequence variation of wild barley Hordeum spontaneum (L.) across environmental gradients in Israel. Heredity 112:646–655PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bonnin I, Huguet T, Gherardi M, Prosperi JM, Olivieri I (1996) High level of polymorphism and spatial structure in a selfing plant species, Medicago truncatula (Leguminosae), shown using RAPD markers. Am J Bot 83:843–855CrossRefGoogle Scholar
  12. Brown AHD, Marshall DR (1995) A basic sampling strategy: theory and practice. In Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity: technical guidelines. International Plant Genetic Resources Institute (IPGRI), Rome; Plant Production and Protection Division, FAO, Rome; World Conservation Union (IUCN), Gland; CABI Publishing, Wallingford, pp 75–91Google Scholar
  13. Brown AHD, Zohary D, Nevo E (1978) Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity 41(1):49–62CrossRefGoogle Scholar
  14. Chauvet S, van der Velde M, Imbert E, Guillemin ML, Mayol M, Riba M, Smulders MJ, Vosman B, Ericson L, Bijlsma R, Giles BE (2004) Past and current gene flow in the selfing, wind-dispersed species Mycelis muralis in Western Europe. Mol Ecol 13:1391–1407PubMedCrossRefGoogle Scholar
  15. Che YH, Yang YP, Yang XM, Li XQ, Li LH (2011) Genetic diversity between ex situ and in situ samples of Agropyron cristatum (L.) Gaertn. based on simple sequence repeat molecular markers. Crop Pasture Sci 62:639–644CrossRefGoogle Scholar
  16. Chen G, Li C, Shi Y, Nevo E (2008) Wild barley, Hordeum spontaneum, a genetic resource for crop improvement in cold and arid regions. Sci Cold Arid Reg 1:0115–0124Google Scholar
  17. Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8(4):e1000357PubMedPubMedCentralCrossRefGoogle Scholar
  18. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679PubMedCrossRefGoogle Scholar
  19. Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Eology 86(7):1704–1714Google Scholar
  20. Del Rio AH, Bamberg JB, Huaman Z, Salas A, Vega SE (1997) Assessing changes in the genetic diversity of potato gene banks: 2—in situ vs ex situ. Theor Appl Genet 95:199–204CrossRefGoogle Scholar
  21. Dreiseitl A, Bockelman HE (2003) Sources of powdery mildew resistance in a wild barley collection. Genet Resour Crop Evol 50:345–350CrossRefGoogle Scholar
  22. Dulloo ME, Hanson J, Jorge MA, Thormann I (2008) Regeneration guidelines: general guiding principles. In: Dulloo ME, Thormann I, Jorge MA, Hanson J (eds) Crop specific regeneration guidelines [CD-ROM]. CGIAR System-wide Genetic Resource Programme (SGRP), RomeGoogle Scholar
  23. Dulloo ME, Fiorino E, Thormann I (2015) Research on conservation and use of crop wild relatives. In: Redden R, Yadav SS, Maxted N, Dulloo ME, Guarino L, Smith P (eds) Crop wild relatives and climate change. Wiley-Blackwell. ISBN: 978-1-118-85433-4. Chapter 7:108–112Google Scholar
  24. Elberse IAM, van Damme JMM, van Tienderen PH (2003) Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation. J Ecol 91:371–382CrossRefGoogle Scholar
  25. Ellstrand NC (2003) Dangerous liaisons? when cultivated plants mate with their wild relatives. Johns Hopkins University Press, BaltimoreGoogle Scholar
  26. Erkkila MJ, Leah R, Ahokas H, Cameron-Mills V (1998) Allele-dependent barley grain β-amylase activity. Plant Physiol 117:679–685PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ersts PJ [Internet] (2016) Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. Accessed on 19 Jan 2016
  28. Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151PubMedCrossRefGoogle Scholar
  29. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620PubMedCrossRefGoogle Scholar
  30. FAO (2006) Country pasture/forage resource profiles: Jordan. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  31. FAO (2013) Report of the fourteenth regular session of the commission on genetic resources for food and agriculture. CGRFA 14/13/report.
  32. FAOSTAT (2015) Statistical Division of the Food and Agriculture Organization of the United Nations, Rome
  33. Fischbeck G, Schwarzbach E, Sobel F, Wahl I (1976) Mehltauresistenz aus Israelischen Populationen der zweizeiligen Wildgerste (Hordeum spontaneum). Z Pflanzenzücht 76:163–166Google Scholar
  34. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. PNAS 104:1278–1282PubMedPubMedCentralCrossRefGoogle Scholar
  36. Franks SJ, Avise JC, Bradshaw WE, Conner JK, Etterson JR, Mazer SJ, Shaw RG, Weis AE (2008) The resurrection initiative: storing ancestral genotypes to capture evolution in action. Bioscience 58(9):870–873CrossRefGoogle Scholar
  37. Gao L, Chen W, Jiang W, Ge S, Hong D, Wang X (2000) Genetic erosion in northern marginal population of the common wild rice Oryza rufipogon Griff. and its conservation, revealed by the change of population genetic structure. Hereditas 133(1):47–53PubMedCrossRefGoogle Scholar
  38. Gao H, Williamson S, Bustamante CD (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176(3):1635–1651PubMedPubMedCentralCrossRefGoogle Scholar
  39. Genger RK, Williams KJ, Raman H, Read BJ, Wallwork H, Burdon JJ, Brown AHD (2003) Leaf scald resistance genes in Hordeum vulgare and Hordeum vulgare ssp. spontaneum: parallels between cultivated and wild barley. Aust J Agric Res 54(12):1335–1342CrossRefGoogle Scholar
  40. Goodwillie C, Kalisz S, Eckert C (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Ann Rev Ecol Evol Syst 36:47–79CrossRefGoogle Scholar
  41. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (Version 2.9.3).
  42. Greene SL, Kisha TJ, Yu L-X, Parra-Quijano M (2014) Conserving plants in gene banks and nature: investigating complementarity with Trifolium thompsonii Morton. PLoS One 9(8):e105145PubMedPubMedCentralCrossRefGoogle Scholar
  43. Grime JP, Hunt R (1975) Relative growth rate: its range and adaptive significance in a local flora. J Ecol 63:393–422CrossRefGoogle Scholar
  44. Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13CrossRefGoogle Scholar
  46. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B 351:1291–1298CrossRefGoogle Scholar
  47. Hereford J (2010) Does selfing or outcrossing promote local adaptation? Am J Bot 97(2):298–302PubMedCrossRefGoogle Scholar
  48. Hoban S, Schlarbaum S (2014) Optimal sampling of seeds from plant populations for ex situ conservation of genetic biodiversity, considering realistic population structure. Biol Conserv 177:90–99CrossRefGoogle Scholar
  49. Hoban S, Arntzen JA, Bruford MW, Godoy JA, Hoelzel R, Segelbacher G, Vila C, Bertorelle G (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl 7(9):984–998PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485PubMedCrossRefGoogle Scholar
  51. Hübner S, Hüffken M, Oren E, Haseneyer G, Stein N, Graner A, Schmid K, Fridman E (2009) Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol 18:1523–1536PubMedCrossRefGoogle Scholar
  52. Hübner S, Günther T, Flavell A, Fridman E, Graner A, Korol A, Schmid KJ (2012) Islands and streams: clusters and gene flow in wild barley populations from the Levant. Mol Ecol 21:1115–1129PubMedCrossRefGoogle Scholar
  53. Hughes PW, Simons AM (2015) Microsatellite evidence for obligate autogamy, but abundant genetic variation in the herbaceous monocarp Lobelia inflata (Campanulaceae). J Evol Biol 28:2066–2077CrossRefGoogle Scholar
  54. IPGRI (2004) Descriptors for barley (Hordeum vulgare L.). International Plant Genetic Resources Institute, RomeGoogle Scholar
  55. Ivandic V, Walther U, Graner A (1998) Molecular mapping of a new gene in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth). Theor Appl Genet 97:1235–1239CrossRefGoogle Scholar
  56. Jain SK (1975) Genetic reserves. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 379–396Google Scholar
  57. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806PubMedCrossRefGoogle Scholar
  58. Jaradat AA (1989) Diversity within and between populations of two sympatrically distributed Hordeum species in Jordan. Theor Appl Genet 78:653–656PubMedGoogle Scholar
  59. Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:13–23CrossRefGoogle Scholar
  60. Jarvis S, Fielder H, Hopkins J, Maxted N, Smart S (2015) Distribution of crop wild relatives of conservation priority in the UK landscape. Biol Conserv 191:444–451CrossRefGoogle Scholar
  61. Jorgensen S, Mauricio R (2004) Neutral genetic variation among wild North American populations of the weedy plant Arabidopsis thaliana is not geographically structured. Mol Ecol 13:3403–3413PubMedCrossRefGoogle Scholar
  62. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  63. Khresat SA, Rawajfih Z, Mohammad M (1998) Land degradation in north-western Jordan: causes and processes. J Arid Environ 39:623–629CrossRefGoogle Scholar
  64. Kind OD, Masel J (2007) The evolution of bet-hedging adaptations to rare scenarios. Theor Popul Biol 72(4):560–575CrossRefGoogle Scholar
  65. Kirkpatrick M, Lande R (1989) The evolution of maternal characters. Evolution 43(3):485–503PubMedCrossRefGoogle Scholar
  66. Lakew B, Henry RJ, Eglinton J, Baum M, Ceccarelli S, Grando S (2013) SSR analysis of introgression of drought tolerance from the genome of Hordeum spontaneum into cultivated barley (Hordeum vulgare ssp. vulgare). Euphytica 191(2):231–243CrossRefGoogle Scholar
  67. Lewis PO, Zaykin D (2001) Genetic Data Analysis: Computer program for the analysis of allelic data (version 1.1).
  68. Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K (2015) Modeling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genom 16:290CrossRefGoogle Scholar
  69. Maxted M, Guarino L (2006) Genetic erosion and genetic pollution of crop wild relatives. In: Ford-Lloyd BV, Dias SR, Bettencourt E (eds) Genetic erosion and pollution assessment methodologies: proceedings of PGR forum workshop 5, Terceira Island, Autonomous Region of the Azores, Portugal, 8–11 Sept 2004. Published on behalf of the European Crop Wild Relative Diversity Assessment and Conservation Forum, Bioversity International, Rome, pp 35–46Google Scholar
  70. Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture, RomeGoogle Scholar
  71. McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E et al (2013) Feeding the future. Nature 499:23–24PubMedCrossRefGoogle Scholar
  72. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol 11:5–18CrossRefGoogle Scholar
  73. Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407PubMedCrossRefGoogle Scholar
  74. Naz AA, Arifuzzaman M, Muzammil S, Pillen K, Jeon J (2014) Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet 15:107PubMedPubMedCentralCrossRefGoogle Scholar
  75. NCARTT (2007) The second country report on the state of the plant genetic resources for food and agriculture. The Hashemite Kingdom of Jordan. National Center for Agricultural Research and Technology Transfer NCARTT, AmmanGoogle Scholar
  76. Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley Hordeum spontaneum in the Fertile Crescent. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 19–43Google Scholar
  77. Nevo E, Beiles A, Gutterman Y, Storch N, Kaplan D (1984) Genetic resources of wild cereals in Israel and vicinity: II—phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica 33(3):737–756CrossRefGoogle Scholar
  78. Nevo E, Fu YB, Pavlicek T, Khalifa S, Tavasi M, Beiles A (2012) Evolution of wild cereals during 28 years of global warming in Israel. PNAS 109(9):3412–3415PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3(7):e196PubMedPubMedCentralCrossRefGoogle Scholar
  80. Olofsson H, Ripa J, Jonzén N (2009) Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proc R Soc B 276:2963–2969PubMedPubMedCentralCrossRefGoogle Scholar
  81. Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–559PubMedCrossRefGoogle Scholar
  82. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  83. Rao NK, Hanson J, Dulloo ME, Ghosh K, Nowell D, Larinde M (2006) Manual of seed handling in genebanks. In Handbooks for Genebanks No. 8. Bioversity International, RomeGoogle Scholar
  84. Repkova J, Dreiseitl A, Lizal P, Kyjovska Z, Teturova K, Psotkova R, Jahoor A (2006) Identification of resistance genes against powdery mildew in four accessions of Hordeum vulgare ssp. spontaneum. Euphytica 151:23–30CrossRefGoogle Scholar
  85. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  86. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228PubMedPubMedCentralGoogle Scholar
  87. Shakhatreh Y, Haddad N, Alrababah M, Grando S, Ceccarelli S (2010) Phenotypic diversity in wild barley (Hordeum vulgare L. ssp. spontaneum (C. Koch) Thell.) accessions collected in Jordan. Genet Resour Crop Evol 57:131–146CrossRefGoogle Scholar
  88. Shaw RG, Shaw FH (2014) Quantitative genetic study of the adaptive process. Heredity 112:13–20PubMedCrossRefGoogle Scholar
  89. Siol M, Bonnin I, Olivieri I, Prosperi JM, Ronfort J (2007) Effective population size associated with self-fertilization: lessons from temporal changes in allele frequencies in the selfing annual Medicago truncatula. J Evol Biol 20:2349–2360PubMedCrossRefGoogle Scholar
  90. Siol M, Prosperi JM, Bonnin I, Ronfort J (2008) How multilocus genotypic pattern helps to understand the history of selfing populations: a case study in Medicago truncatula. Heredity 100:517–525PubMedCrossRefGoogle Scholar
  91. Stebbins GL (1957) Self-fertilization and population variability in higher plants. Am Nat 91:337–354CrossRefGoogle Scholar
  92. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M et al (2007) A 1000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  93. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedCrossRefGoogle Scholar
  94. Thormann I, Engels JMM (2015) Genetic diversity and erosion: a global perspective. In: Ahuja MR, Jain SM (eds) Genetic diversity and erosion in plants—indicators and prevention, vol 1. Springer, Berlin, pp 263–294CrossRefGoogle Scholar
  95. Thormann I, Fiorino E, Halewood M, Engels J (2015) Plant genetic resources collections and associated information as baseline resource for genetic diversity studies: an assessment of the IBPGR supported collections. Genet Resour Crop Evol 62(8):1279–1293CrossRefGoogle Scholar
  96. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102(23):8245–8250PubMedPubMedCentralCrossRefGoogle Scholar
  97. Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152CrossRefGoogle Scholar
  98. Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573PubMedCrossRefGoogle Scholar
  99. Van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2010) Genetic erosion in crops: concept, research, results and challenges. Plant Genet Resour: Charact Util 8(1):1–15CrossRefGoogle Scholar
  100. Van Rijn CPE, Heersche I, van Berkel YEM, Nevo E, Lamers H, Poorter H (2000) Growth characteristics in Hordeum spontaneum populations from different habitats. New Phytol 146:471–481CrossRefGoogle Scholar
  101. Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N et al (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114(6):1091–1103PubMedCrossRefGoogle Scholar
  102. Vincent H, von Bothmer R, Knüpffer H, Amri A, Konopka J, Maxted N (2013) Genetic gap analysis of wild Hordeum taxa. Plant Genet Resour: Charact Util 10(3):242–253CrossRefGoogle Scholar
  103. Volis S, Mendlinger S, Orlovsky N (2000) Variability in phenotypic traits in core and peripheral populations of wild barley Hordeum spontaneum Koch. Hereditas 133:235–247PubMedCrossRefGoogle Scholar
  104. von Bothmer R (1992) The wild species of Hordeum: relationships and potential use for improvement of cultivated barley. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 3–18Google Scholar
  105. von Bothmer R, Jacobsen N, Baden C, Jørgensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum. Systematic and ecogeographic studies on crop genepools, vol 7, 2nd edn. International Plant Genetic Resources Institute, RomeGoogle Scholar
  106. von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111(3):583–590CrossRefGoogle Scholar
  107. von Korff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (Hordeum vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231CrossRefGoogle Scholar
  108. von Korff M, Wang H, Léon J, Pillen K (2008) AB-QTL analysis in spring barley: III—identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21(1):81–93CrossRefGoogle Scholar
  109. Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6(12):e325PubMedCentralCrossRefGoogle Scholar
  110. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedPubMedCentralGoogle Scholar
  111. Witcombe JR, Bourgois JJ, Rifaie R (1982) Germplasm collections from Syria and Jordan. Plant Genet Resour Newslett 50:2–8Google Scholar
  112. Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proc R Soc B 280:20130133PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Bioversity InternationalMaccarese, RomeItaly
  2. 2.National Center for Genetic Resources PreservationUnited States Department of Agriculture-Agricultural Research ServiceFort CollinsUSA
  3. 3.Genebank DepartmentLeibniz Institute of Plant Genetics and Crop Plant ResearchStadt Seeland, OT GaterslebenGermany
  4. 4.International Center for Agricultural Research in Dry Areas (ICARDA)AmmanJordan
  5. 5.Plant Breeding, Institute for Agricultural and Nutritional ScienceMartin-Luther-University Halle-WittenbergHalle/SaaleGermany

Personalised recommendations