Advertisement

Genetic Resources and Crop Evolution

, Volume 64, Issue 4, pp 791–804 | Cite as

Prediction of the effects of climate change on Sechium edule (Jacq.) Swartz varietal groups in Mexico

  • Rosalinda González-Santos
  • Jorge Cadena-ÍñiguezEmail author
  • Francisco J. Morales-Flores
  • Víctor M. Ruiz-Vera
  • José Pimentel-López
Research Article
  • 246 Downloads

Abstract

Climate change has significant impacts on biodiversity and, particularly, on agriculture. In this study, the impact of climate change on five varietal groups of Sechium edule, up to the year 2050, was determined through the application of the HadGEM2-CC model based on bioclimate layers. The varietal groups, nigrum minor, albus dulcis and nigrum xalapensis, will lose more than 50 % of their potential current distribution due to a high impact in both the rcp 45 and the rcp 85 scenarios. These two varietal groups also have a limited distribution, which makes them highly susceptible. In the case of nigrum spinosum, a loss under 50 % is predicted with scenario rcp 45. The varietal group that increases its distribution in 11 % is virens levis. The model forecasts significant impacts up to the year 2050; however, the groups evaluated present high genetic diversity and phenotypic plasticity which allow adapting to new conditions that may contribute to mitigating the effects of climate change.

Keywords

Climate change Sechium edule Varietal groups 

References

  1. Abou-Hussein D (2012) Climate change and its impact in the productivity and quality of vegetable crops. J Appl Sci Res 8:4359–4383Google Scholar
  2. Anon (2003) Diario Oficial de la Federación; declaratoria de vigencias de las normas mexicanas. Primera sección, Mayo 22. MéxicoGoogle Scholar
  3. Arévalo-Galarza ML, Cadena-Iñiguez J, Romero-Velázquez SD, Tlalpal-Bolaños B (2011) Rescatando y aprovechando los recursos fitogenéticos de Mesoamérica Volumen 3: Chayote: manejo postcosecha. Colegio de Postgraduados y Grupo Interdisciplinario de Investigación en Sechium edule en México, A.C.: MéxicoGoogle Scholar
  4. Avendaño-Arrazate CH, Cadena-Iñiguez J, Arévalo-Galarza MLC, Campos-Rojas E, Cisneros-Solano VM, Aguirre-Medina JF (2010) Las variedades del chayote mexicano recurso ancestral con potencial de comercialización. Grupo Interdisciplinario de Investigación en Sechium edule en México, A.C.: MéxicoGoogle Scholar
  5. Avendaño-Arrazate CH, Cadena-Iñiguez J, Arévalo-Galarza ML, Cisneros-Solano VM, Aguirre-Medina JF, Moreno-Pérez EC, Cortés-Cruz M, Castillo-Martínez CR, Ramírez-Vallejo P (2012) Variación genética en el complejo infraespecífico de chayote evaluada mediante sistemas isoenzimáticos. Pesq agropec bras 47(2):244–252CrossRefGoogle Scholar
  6. Cadena-Iñiguez J (2005) Caracterización morfoestructural, fisiológica, química y genética de diferentes tipos de chayote (Sechium edule). Tesis Doctoral, Colegio de Postgraduados, Campus Montecillos, Texcoco, Estado de MéxicoGoogle Scholar
  7. Cadena-Iñiguez J, Arevalo-Galarza MLC (2011). Las variedades del chayote Sechium edule (Jacq.) Sw. y su comercio mundial. Mundi Prensa, MéxicoGoogle Scholar
  8. Cadena-Iñiguez J, Ruiz-Posadas LM, Trejo-López C, Sánchez-García P, Aguirre-Medina JF (2001) Regulación del intercambio de gases y relaciones hídricas en chayote (Sechium edule (Jacq.) Swartz). Revista Chapingo Serie Horticultura 7(1):21–35Google Scholar
  9. Cadena-Iñiguez J, Avendaño-Arrazate CH, Soto-Hernández MS, Posadas-Ruiz LM, Aguirre-Medina JF, Arévalo-Galarza L (2008) Infraspecific variation of Sechium edule (Jacq.) Sw. in the state of Veracruz, Mexico. Genet Resour Crop Evol 55:835–847CrossRefGoogle Scholar
  10. Cadena-Iñiguez J, Soto-Hernández M, Torres-Salas A, Aguiñiga-Sánchez I, Ruiz-Posadas L, Rivera-Martínez AR, Avendaño-Arrazate C, Santiago-Osorio E (2013) The antiproliferative effect of chayote varieties (Sechium edule (Jacq.) Sw.) on tumour cell lines. J Med Plants Res 7(8):455–460Google Scholar
  11. Castillo-Martínez C, Cisneros-Solano VM, Hernández-Marini R, Cadena-Iñiguez J, Avendaño-Arrazate CH (2013) Conservación y multiplicación de una colección de Sechium spp. Colegio de Postgraduados y Grupo Interdisciplinario de Investigación Sechium edule en México A.C, MéxicoGoogle Scholar
  12. Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108:317–326CrossRefPubMedGoogle Scholar
  13. Cross HB, Lira Saade R, Motley TJ (2006) Origins and diversification of Chayote. In: Motley TJ, Zerega NJC, Cross HB (eds) Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 171–194Google Scholar
  14. Dávila P, Téllez O, Lira R (2013) Impact of climate change on the distribution of populations of an endemic Mexican columnar cactus in the Tehuacán-Cuicatlán Valley, México. Plant Biosyst 147:376–386CrossRefGoogle Scholar
  15. Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7(11):e47981. doi: 10.1371/journal.pone.0047981 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Deryng D, Conway D, Rmankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:034011CrossRefGoogle Scholar
  17. Fallon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigations-The importance of an integrated approach. Sci Total Environ 408:5667–5687CrossRefGoogle Scholar
  18. Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20CrossRefGoogle Scholar
  19. GBIF Data Portal (2014) http://www.gbif.net. Access 10 March 2015
  20. Goudriaan J (1995) Global climate change: modeling the potential responses of agro-ecosystems with special reference to crop protection. Environ Pollut 87:215–224CrossRefPubMedGoogle Scholar
  21. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw RM, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine and conservation. PNAS 110:6907–6912CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005a) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  23. Hijmans RJ, Guarino L, Jarvis A, O’Brien, Mathur P, Bussink C, Cruz M, Barrantes I, Rojas E (2005b) DIVA-GIS version 7.5 manual. www.diva-gis.org
  24. INEGI (2009) Conjunto de datos vectoriales de la carta de uso de suelo y vegetación escala 1:1 000 000, Serie v. Instituto Nacional de Estadística y Geografía. MéxicoGoogle Scholar
  25. INEGI (2012) Marco Geoestadístico Estatal, versión 5. Instituto Nacional de Estadística y Geografía, MéxicoGoogle Scholar
  26. INEGI, CONABIO, INE (2008) Ecorregiones Terrestres de México. MéxicoGoogle Scholar
  27. IPCC (2007) Cambio climático: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo de redacción principal: Pachauri, R.K. y Reisinger, A. (directores de la publicación)]. IPCC, Ginebra, SuizaGoogle Scholar
  28. Lira R (1996) Chayote. Sechium edule (Jacq) Sw. Promoting the conservation and use of underutilized and neglected crops. 8. Institute of Plant Genetics and Crop Plant Research/International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  29. Lira R, Téllez O, Dávila P (2009) The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genet Resour Crop Evol 56:691–703CrossRefGoogle Scholar
  30. Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James P, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4:723–757CrossRefGoogle Scholar
  31. Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of phenotypic plasticity in plants. Ann N Y Acad Sci 1206:35–55CrossRefPubMedGoogle Scholar
  32. Mercer KL, Perales HR (2010) Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 3:480–493CrossRefPubMedPubMedCentralGoogle Scholar
  33. Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer R, van Detlef V, Weyant J, Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts and response strategies. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  34. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards L, Valladares F, van Kleunene M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 826:1–9Google Scholar
  35. Parra-Quijano M (2015) Programa para el Fortalecimiento de las Capacidades en Programas Nacionales de Recursos Fitogenéticos de América Latina. Disponible en: http://www.capfitogen.net/es. Access 15 April 2015
  36. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  37. Ruane AC, DeWayne-Cecil L, Horton RM, Gordon R, McCollum R, Brown D, Killough B, Goldberg R, Greeley AP, Rosenzweing C (2013) Climate change impact uncertainties for maize in Panama: farm information, climate projections, and yield sensitivities. Agric For Meteorol 17:132–145CrossRefGoogle Scholar
  38. Scheldeman X, Van Zonneveld M (2011) Manual de capacitación en análisis espacial de diversidad y distribución de plantas. Bioversity International, RomaGoogle Scholar
  39. SIAP (2016) Servicio de Información Agroalimentaria y Pesquera. http://www.siap.gob.mx/. Access 5 March 2016
  40. Southworth J, Randolph JC, Habeck M, Doering OC, Pfeifer RA, Rao DG, Johnston JJ (2000) Consequences of future climate change and changing climate variability on maize yields in the Midwestern United States. Agric. Ecosyst Environ 82:139–158CrossRefGoogle Scholar
  41. Stace CA (1986) The present and future infraspecific classification of wild plants. Syst Assoc Special 29:10–20Google Scholar
  42. Teixeira E, Fischer G, van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215CrossRefGoogle Scholar
  43. UPOV (2004) Unión Internacional para la Protección de las Obtenciones Vegetales. http://www.upov.int/about/es/. Access 20 June 2015
  44. Ureta C, Martínez-Meyer E, Perales HR, Álvarez-Buylla ER (2012) Projecting the effects of climate change on the distributions of maize races and their wild relatives in México. Glob Changes Biol 18:1073–1082CrossRefGoogle Scholar
  45. Vidaurre de la Rivera M, Lindner A, Pretzsch J (2013) Assessing adaptation- Climate change and indigenous livelihood in the Andes of Bolivia. J Agric Rural Dev Trop Subtrop 114(2):109–122Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rosalinda González-Santos
    • 1
  • Jorge Cadena-Íñiguez
    • 2
    Email author
  • Francisco J. Morales-Flores
    • 1
  • Víctor M. Ruiz-Vera
    • 1
  • José Pimentel-López
    • 1
  1. 1.Colegio de PostgraduadosSalinas HidalgoMexico
  2. 2.Grupo Interdisciplinario de Investigación en Sechium edule en MéxicoTexcocoMexico

Personalised recommendations